Canonical almost geodesic mappings of type π1 onto pseudo-Riemannian manifolds

dc.contributor.author Березовський, Володимир Євгенійович
dc.contributor.author Berezovskii, V. E.
dc.date.accessioned 2016-01-03T14:05:29Z
dc.date.available 2016-01-03T14:05:29Z
dc.date.issued 2008
dc.description.abstract In this paper, the authors study properties of canonical almost geodesic mappings of type π˜1 onto pseudo-Riemannian manifolds. They find necessary and sufficient conditions for existence of the canonical almost geodesic mappings of type π˜1 of a manifold endowed with a linear connection onto pseudo-Riemannian manifolds. The conditions are described by means of a closed system of partial differential equations of first order of Cauchy type. uk_UA
dc.identifier.citation Berezovski, V.E.; Mikeš, J.; Vanžurová, A. Canonical almost geodesic mappings of type π1 onto pseudo-Riemannian manifolds. Kowalski, Oldřich (ed.) et al., Differential geometry and its applications. Proceedings of the 10th international conference on differential geometry and its applications, DGA 2007, Olomouc, Czech Republic, August 27–31, 2007. Hackensack, NJ: World Scientific. 65-75 (2008). uk_UA
dc.identifier.isbn 978-981-279-060-6/hbk
dc.identifier.uri http://lib.udau.edu.ua/handle/123456789/1807
dc.language.iso en uk_UA
dc.publisher Hackensack, NJ: World Scientific uk_UA
dc.subject linear connection; affine manifold uk_UA
dc.subject pseudo-Riemannian space uk_UA
dc.subject geodesic curve uk_UA
dc.subject almost geodesic curve uk_UA
dc.subject geodesic mapping uk_UA
dc.subject almost geodesic mapping uk_UA
dc.subject deformation tensor uk_UA
dc.title Canonical almost geodesic mappings of type π1 onto pseudo-Riemannian manifolds uk_UA
dc.type Стаття uk_UA
Файли
Вихідний пакет
Зараз показується 1 - 1 з 1
Немає доступних мініатюр
Ім'я:
08_Olomouc.pdf
Розмір:
134.37 KB
Формат:
Adobe Portable Document Format
Опис:
Набір ліцензій
Зараз показується 1 - 1 з 1
Немає доступних мініатюр
Ім'я:
license.txt
Розмір:
7.14 KB
Формат:
Item-specific license agreed upon to submission
Опис: