Diffeomorphism of affine connected spaces which preserved Riemannian and Ricci curvature tensors
Diffeomorphism of affine connected spaces which preserved Riemannian and Ricci curvature tensors
dc.contributor.author | Березовський, Володимир Євгенійович | |
dc.date.accessioned | 2017-06-27T10:12:05Z | |
dc.date.available | 2017-06-27T10:12:05Z | |
dc.date.issued | 2017 | |
dc.description.abstract | In the present paper we study the preserving of Riemannian and Ricci tensors with respect to a diffeomorphism of spaces with affine connection. We consider geodesic and almost geodesic mappings of the first type. The basic equations of these maps form a closed system of Cauchy type in covariant derivatives. We determine the quantity of essential (substantial) parameters, on which depend the general solution of this problem. | uk_UA |
dc.identifier.citation | Berezovski V. E., Bácsó S., Mikes J. Diffeomorphism of affine connected spaces which preserved Riemannian and Ricci curvature tensors. Miskolc Mathematical Notes. Vol. 18 (2017), No. 1, pp. 117–124 | uk_UA |
dc.identifier.issn | 1787-2413 | |
dc.identifier.uri | http://lib.udau.edu.ua/handle/123456789/6252 | |
dc.language.iso | en | uk_UA |
dc.publisher | Miskolc University Press | uk_UA |
dc.subject | preserving | uk_UA |
dc.subject | Riemannian tensor | uk_UA |
dc.subject | Ricci tensor | uk_UA |
dc.subject | manifold with affine connection | uk_UA |
dc.title | Diffeomorphism of affine connected spaces which preserved Riemannian and Ricci curvature tensors | uk_UA |
dc.type | Стаття | uk_UA |
Файли
Вихідний пакет
1 - 1 з 1
Немає доступних мініатюр
- Ім'я:
- Berezovski_1978.pdf
- Розмір:
- 972.34 KB
- Формат:
- Adobe Portable Document Format
- Опис:
Набір ліцензій
1 - 1 з 1
Немає доступних мініатюр
- Ім'я:
- license.txt
- Розмір:
- 7.14 KB
- Формат:
- Item-specific license agreed upon to submission
- Опис: