Diffeomorphism of affine connected spaces which preserved Riemannian and Ricci curvature tensors

dc.contributor.author Березовський, Володимир Євгенійович
dc.date.accessioned 2017-06-27T10:12:05Z
dc.date.available 2017-06-27T10:12:05Z
dc.date.issued 2017
dc.description.abstract In the present paper we study the preserving of Riemannian and Ricci tensors with respect to a diffeomorphism of spaces with affine connection. We consider geodesic and almost geodesic mappings of the first type. The basic equations of these maps form a closed system of Cauchy type in covariant derivatives. We determine the quantity of essential (substantial) parameters, on which depend the general solution of this problem. uk_UA
dc.identifier.citation Berezovski V. E., Bácsó S., Mikes J. Diffeomorphism of affine connected spaces which preserved Riemannian and Ricci curvature tensors. Miskolc Mathematical Notes. Vol. 18 (2017), No. 1, pp. 117–124 uk_UA
dc.identifier.issn 1787-2413
dc.identifier.uri http://lib.udau.edu.ua/handle/123456789/6252
dc.language.iso en uk_UA
dc.publisher Miskolc University Press uk_UA
dc.subject preserving uk_UA
dc.subject Riemannian tensor uk_UA
dc.subject Ricci tensor uk_UA
dc.subject manifold with affine connection uk_UA
dc.title Diffeomorphism of affine connected spaces which preserved Riemannian and Ricci curvature tensors uk_UA
dc.type Стаття uk_UA
Файли
Вихідний пакет
Зараз показується 1 - 1 з 1
Немає доступних мініатюр
Ім'я:
Berezovski_1978.pdf
Розмір:
972.34 KB
Формат:
Adobe Portable Document Format
Опис:
Набір ліцензій
Зараз показується 1 - 1 з 1
Немає доступних мініатюр
Ім'я:
license.txt
Розмір:
7.14 KB
Формат:
Item-specific license agreed upon to submission
Опис: