Diffeomorphism of affine connected spaces which preserved Riemannian and Ricci curvature tensors
Diffeomorphism of affine connected spaces which preserved Riemannian and Ricci curvature tensors
Немає доступних мініатюр
Дата
2017
Автори
Березовський, Володимир Євгенійович
Назва журналу
ISSN журналу
Назва тома
Видавець
Miskolc University Press
Інструкція
In the present paper we study the preserving of Riemannian and Ricci tensors with respect to a diffeomorphism of spaces with affine connection. We consider geodesic and almost geodesic mappings of the first type. The basic equations of these maps form a closed system of Cauchy type in covariant derivatives. We determine the quantity of essential (substantial) parameters, on which depend the general solution of this problem.
Опис
Ключові слова
preserving,
Riemannian tensor,
Ricci tensor,
manifold with affine connection
Бібліографічний опис
Berezovski V. E., Bácsó S., Mikes J. Diffeomorphism of affine connected spaces which preserved Riemannian and Ricci curvature tensors. Miskolc Mathematical Notes. Vol. 18 (2017), No. 1, pp. 117–124