Infinitesimal Transformations of Locally Conformal Kähler Manifolds

dc.contributor.author Березовський, Володимир Євгенійович
dc.date.accessioned 2019-07-27T12:04:43Z
dc.date.available 2019-07-27T12:04:43Z
dc.date.issued 2019
dc.description.abstract The article is devoted to infinitesimal transformations. We have obtained that LCK-manifolds do not admit nontrivial infinitesimal projective transformations. Then we study infinitesimal conformal transformations of LCK-manifolds. We have found the expression for the Lie derivative of a Lee form. We have also obtained the system of partial differential equations for the transformations, and explored its integrability conditions. Hence we have got the necessary and sufficient conditions in order that the an LCK-manifold admits a group of conformal motions. We have also calculated the number of parameters which the group depends on. We have proved that a group of conformal motions admitted by an LCK-manifold is isomorphic to a homothetic group admitted by corresponding Kählerian metric. We also established that an isometric group of an LCK-manifold is isomorphic to some subgroup of the homothetic group of the coresponding local Kählerian metric. uk_UA
dc.identifier.citation Cherevko, Y.; Berezovski, V.; Hinterleitner, I.; Smetanová, D. Infinitesimal Transformations of Locally Conformal Kähler Manifolds. Mathematics 2019, 7, 658. uk_UA
dc.identifier.issn 2227-7390
dc.identifier.uri http://lib.udau.edu.ua/handle/123456789/6871
dc.language.iso en uk_UA
dc.publisher MDPI AG, Basel, Switzerland uk_UA
dc.subject Hermitian manifold uk_UA
dc.subject locally conformal Kähler manifold uk_UA
dc.subject Lee form uk_UA
dc.subject diffeomorphism uk_UA
dc.subject conformal transformation uk_UA
dc.subject Lie derivative uk_UA
dc.title Infinitesimal Transformations of Locally Conformal Kähler Manifolds uk_UA
dc.type Стаття uk_UA
Файли
Вихідний пакет
Зараз показується 1 - 1 з 1
Немає доступних мініатюр
Ім'я:
mathematics-07-00658-v2.pdf
Розмір:
275.27 KB
Формат:
Adobe Portable Document Format
Опис:
Набір ліцензій
Зараз показується 1 - 1 з 1
Немає доступних мініатюр
Ім'я:
license.txt
Розмір:
13.01 KB
Формат:
Item-specific license agreed upon to submission
Опис: