Fundamental PDE’s of the canonical almost geodesic mappings of type π ˜ 1

dc.contributor.author Березовський, Володимир Євгенійович
dc.contributor.author Berezovskii, V. E.
dc.date.accessioned 2015-12-15T15:49:26Z
dc.date.available 2015-12-15T15:49:26Z
dc.date.issued 2014
dc.description.abstract For modelling of various physical processes, geodesic lines and almost geodesic curves serve as a useful tool. Trasformations or mappings between spaces (endowed with a metric or a connection) which preserve such curves play an important role in physics, particularly in mechanics, and in geometry as well. In the present article the authors continue investigations concerning existence of almost geodesic mappings of manifolds with linear (affine) connection, particularly of the so-called π ˜ 1 mappings, i.e. canonical almost geodesic mappings of type π ˜ 1 according to Sinyukov. First they give necessary and sufficient conditions for existence of π ˜ 1 mappings of a manifold endowed with a linear connection onto pseudo-Riemannian manifolds. The conditions take the form of a closed system of PDEs of first order of Cauchy type. Further they deduce necessary and sufficient conditions for existence of π ˜ 1 mappings onto generalized Ricci-symmetric spaces. The results are generalizations of some previous theorems obtained by N. S. Sinyukov. uk_UA
dc.identifier.citation Berezovski, V.E.; Mikeš, J.; Vanžurová, A. Fundamental PDE’s of the canonical almost geodesic mappings of type π ˜ 1 . Bull. Malays. Math. Sci. Soc. (2) 37, No. 3, 647-659 (2014). uk_UA
dc.identifier.issn 0126-6705; 2180-4206/e
dc.identifier.uri http://lib.udau.edu.ua/handle/123456789/1117
dc.language.iso en uk_UA
dc.publisher Bull. Malays. Math. Sci. Soc. uk_UA
dc.subject Riemannian space uk_UA
dc.subject Ricci-symmetric space uk_UA
dc.subject geodesic mapping uk_UA
dc.subject almost geodesic mapping uk_UA
dc.subject partial differential equations uk_UA
dc.subject manifold uk_UA
dc.title Fundamental PDE’s of the canonical almost geodesic mappings of type π ˜ 1 uk_UA
dc.type Стаття uk_UA
dc.type Scopus
Файли
Вихідний пакет
Зараз показується 1 - 1 з 1
Немає доступних мініатюр
Ім'я:
v37n3p4.pdf
Розмір:
162.16 KB
Формат:
Adobe Portable Document Format
Опис:
Full Text
Набір ліцензій
Зараз показується 1 - 1 з 1
Немає доступних мініатюр
Ім'я:
license.txt
Розмір:
7.14 KB
Формат:
Item-specific license agreed upon to submission
Опис: