Modeling of substrate and air temperature dynamics in the mushroom greenhouse

dc.contributor.author Golub G
dc.contributor.author Kepko O.
dc.contributor.author Pushka O.
dc.contributor.author Kovtuniuk Z.
dc.contributor.author Kotliar T.
dc.date.accessioned 2023-06-14T04:03:38Z
dc.date.available 2023-06-14T04:03:38Z
dc.date.issued 2023
dc.description.abstract Economic efficiency of greenhouse vegetable growing depends quite significantly on the cost of energy carriers, which is why the introduction of energy-saving technologies in greenhouse vegetable growing is an urgent issue. One of the ways to save energy resources can be the use of a closed ventilation system of the "plant greenhouse -mushroom greenhouse" type, which is based on the opposite type of respiration of plants and mushrooms. A closed ventilation system includes air exchange between the greenhouse with growing plants and the cultivation room for growing mushrooms. The closed ventilation system allows you to save energy by reducing the heating of the incoming air, as well as increasing the yield of vegetable products due to the increased concentrations of carbon dioxide in the air that flows from the cultivation room for mushrooms to the greenhouse and mushrooms due to the increased concentrations of oxygen in the air that flows into the cultivation room for mushrooms from the greenhouse. Mathematical modeling of the process of heat transfer between greenhouses makes it possible to simulate transitional processes between rooms in order to assess the quality and accuracy of regulation, as well as to evaluate the parameters of the object in transitional modes. Mathematical modeling of dynamic processes is the basis for the formulation of transfer functions for the automatic control system. As a result of the study, mathematical models of the temperature dynamics of the substrate of mushrooms and greenhouse vegetables were obtained due to the analytical solution of the system of differential equations. The adequacy of the solution was verified by the Runge-Kutta method and compared with experimental data. The difference between the theoretical and experimental values is not significant and amounted to-3 % for the substrate temperature and-3.2 % for the air temperature.
dc.identifier.citation Golub G. Modeling of substrate and air temperature dynamics in the mushroom greenhouse / G. Golub, O. Kepko, O. Pushka, Z. Kovtuniuk, T. Kotliar // INMATEH – Agricultural Engineering. – 2023. – Vol. 69, № 1. – Р. 315-324
dc.identifier.issn 2068-4215
dc.identifier.uri https://lib.udau.edu.ua/handle/123456789/9534
dc.language.iso en
dc.publisher INST NATL CERCETAREB-DUL ION IONESCU BRAD NR 16, SECTOR 1, BUCHAREST 013813, ROMANIA
dc.title Modeling of substrate and air temperature dynamics in the mushroom greenhouse
dc.type Стаття
Файли
Вихідний пакет
Зараз показується 1 - 1 з 1
Немає доступних мініатюр
Ім'я:
Modeling of substrate and air temperature dynamics in the mushroom greenhouse.pdf
Розмір:
636.79 KB
Формат:
Adobe Portable Document Format
Опис:
Набір ліцензій
Зараз показується 1 - 1 з 1
Немає доступних мініатюр
Ім'я:
license.txt
Розмір:
13.05 KB
Формат:
Item-specific license agreed upon to submission
Опис: