Кафедра математики та фізики
Постійний URI для цього розділу
Огляд
Перегляд Кафедра математики та фізики по Тема "almost geodesic mappings"
Результати на сторінці
Параметри сортування
-
МатеріалAlmost geodesic mappings of spaces with affine connection(Springer US, 2015) Березовський, Володимир Євгенійович ; Berezovskii, V. E.This paper is devoted to the further development of the theory of almost geodesic mappings of spaces with affine connection.
-
МатеріалGeodesic mappings and their generalizations(Springer, 2016) Березовський, Володимир ЄвгенійовичThis paper is devoted to further study of the theory of geodesic mappings and their generalizations, including conformal, holomorphically projective, F-planar, and almost geodesic mappings of affinely connected spaces.
-
МатеріалOn a class of curvature preserving almost geodesic mappings of manifolds with affine connection(Slovak University of Technology in Bratislava, 2011) Березовський, Володимир Євгенійович ; Berezovskii, V. E.In this paper we pay attention to a particular case of almost geodesic mappings of the first type between (differentiable) manifolds with affine connection. We use here lassical tensor methods and the apparatus of partial differential equations. We prove that under the mappings under consideration, the invariant geometric object is just the (Riemannian) curvature tensor of the connection. We present the basic equations of the lass of mappings under consideration in an equivalent form of the Cauchy system in covariant derivatives.
-
МатеріалOn a class of curvature preserving almost geodesic mappings of manifolds with affine connection(Fac. of Mechanical Engineering, Slovak University of Technology in Bratislava, 2011) Березовський, Володимир Євгенійович ; Berezovskii, V. E.In this paper we pay attention to a particular case of almost geodesic mappings of the first type between (differentiable) manifolds with affine connection. We use here lassical tensor methods and the apparatus of partial differential equations. We prove that under the mappings under consideration, the invariant geometric object is just the (Riemannian) curvature tensor of the connection. We present the basic equations of the lass of mappings under consideration in an equivalent form of the Cauchy system in covariant derivatives.
-
МатеріалOn canonical almost geodesic mappings of type pi_2(e)(Vrnjacka Banja, 2018) Березовський, Володимир ЄвгенійовичIn this study we consider canonical almost geodesic mappings of typeps pi_2(e).
-
МатеріалOn special almost geodesic mappings of type π1 of spaces with affine connection(Palacký University Olomouc, 2004) Березовський, Володимир Євгенійович ; Berezovskii, V. E.A diffeomorphism f: A n →(A¯n) of two affine spaces is called a special almost geodesic mapping if (a) Every geodesic of An passes into an almost geodesic curve of (A¯n) . (b) (Pij h,k)+(Pij a)(Pak h)=aij(δk h) , where (Pij h) is the difference of the two respective connection coefficients and aij is a symmetric tensor. In this paper, the authors discuss some tensorial properties of special almost geodesic mappings.
-
МатеріалOn the classification of almost geodesic mappings of affineconnected spaces(Novi Sad, 1989) Березовський, Володимир Євгенійович ; Berezovskii, V. E.It is show that except for pi1, pi2 and pi3 other almost geodesic mappings of affine connected spaces (without the torsion and with it) do not exist if the dimension of space is n > 5.