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Abstract. In this paper we pay attention to a particular case of almost geodesic mappings
of the first type between (differentiable) manifolds with affine connection. We use here
classical tensor methods and the apparatus of partial differential equations.
We prove that under the mappings under consideration, the invariant geometric object is
just the (Riemannian) curvature tensor of the connection. We present the basic equations
of the class of mappings under consideration in an equivalent form of the Cauchy system
in covariant derivatives.
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1 Introduction

Many monographs and papers are devoted to the theory of geodesic and holomorphically pro-
jective mappings, see [1]-[18]. We continue here a research project on geodesic and almost
geodesic mappings of spaces with affine connection, or pseudo-Rimannian spaces, respectively.

In this paper we pay attention to a particular case of almost geodesic mappings of the
first type between (differentiable) manifolds endowed affine connection. We prove that under
such maps, the invariant geometric object is just the (Riemannian) curvature tensor of the
connection. We present the basic equations of the class of mappings under consideration in an
equivalent form of the Cauchy system in covariant derivatives.

As the main tool, we use here classical tensor methods and the apparatus of partial differ-
ential equations.
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2 Almost geodesic mappings of manifolds with affine connection

Let us recall the basic concepts of the theory of almost geodesic mappings of manifolds with
affine connection introduced in [12, 13, 14]. A (differentiable) curve defined in a manifold
with affine connection An is called almost geodesic if there is a (differentiable) two-dimensional
parallel distribution along the curve such that the tangent vectors of the curve, being parallely
transported along the curve, still belong to the distribution.

A diffeomorphism f : An → Ān of manifolds with affine connection is called almost geodesic
if all geodesics in An are mapped onto almost geodesic curves of Ān.

A map of An onto Ān is almost geodesic if and only if in a common coordinate system
(x1, . . . , xn) (with respect to the diffeomorphism f , [11, p. 85]), the deformation tensor of the
connections ([11, p. 86]) P h

ij(x) = Γ̄h
ij(x) − Γh

ij(x) satisfies

Ah
αβγλ

αλβλγ ≡ aP h
αβλ

αλβ + bλh

where Ah
ijk ≡ P h

ij,k + P α
ijP

h
αk, Γh

ij (Γ̄h
ij, respectively) are components of the connection in the

manifold An (Ān, respectively), λh is an arbitrary vector, and a, b are some functions of the
variables xh, λh. Here and in what follows, “ , ” denotes the covariant derivative with respect
to the connection of An.

N.S. Sinyukov distinguished in [8, 12, 13, 14] three types of almost geodesic mappings
denoted by π1, π2 and π3. We proved in [1, 8] that for dimensions n > 5, there are no
others. Almost geodesic mappings (in short, AGM) of type π1 are characterized by the following
conditions for the deformation tensor

Ah
(ijk) = δh

(iajk) + b(iP
h
jk)

where aij is a symmetric tensor, bi is a covector, δh
i is the Kronecker tensor, and (ijk) means

symmetrization (without division) with respect to the listed indices.

3 A particular subclass of the first type AGM

Let then following conditions are satisfied under the diffeomorphism of manifolds with affine
connection:

P h
ij,k = −P α

ijP
h
αk + δh

(kaij) (1)

Such mappings belong, as a particular case, to AGM of the first type. The Riemannian tensors
Rh

ijk and R̄h
ijk of the manifolds An and Ān, respectively, are related by [13]

R̄h
ijk = Rh

ijk + P h
i[k,j] + P α

i[kP
h
j]α (2)

where [kj] denotes alternation with respect to the distinguished indices. According to (1)
and (2), the following holds:

Theorem 3.1 The Riemannian tensor Rh
ijk is an invariant object of manifolds with affine

connection under almost geodesic mappings satisfying (1).
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Since the Riemmanian tensor vanishes in affine spaces, we deduce that the affine spaces
form a class closed under AGM satisfying (1):

Theorem 3.2 If an affine space An admits an almost geodesic mapping onto Ān that satis-
fies (1), then Ān is an affine space.

Regarding (1) as a system of Cauchy type with respect to the components of the deformation
tensor P h

ij we find the corresponding integrability conditions. For this purpose, let us calculate
covariant derivatives of (1) with respect to xm, and let us alternate in k and m. Accounting
the Ricci identity we get

δh
i aj[k,m] + δh

j ai[k,m] + δh
[k|aij,|m]) = −P α

ijR
h
αkm + P h

α(jR
α
i)km + aj[mP

h
k]i + ai[mP

h
k]j. (3)

Now contracting the integrability conditions in h and m we get

ajk,i+aik,j−(n+1)aij,k = −P α
ijRαk +P β

αjR
α
ikβ +P β

αiR
α
jkβ +ajαP

α
ki−ajkP

α
αi +aiαP

α
jk−aikP

α
jα. (4)

Further, alternating (4) over k and j we obtain

aij,k = aik,j + 1
n+ 2(P α

ijRαk − P α
ikRαj − P

β
αjR

α
ikβ − P

β
αiR

α
jkβ

+P β
αkR

α
ijβ + P

β
αiR

α
kjβ − ajαP

α
ki + akαP

α
ij + aikP

α
jα − aijP

α
kα).

(5)

In (5), let us interchange the indices k and i,

akj,i = aik,j + 1
n + 2(P α

kjRαi − P α
kiRαj − P

β
αjR

α
kiβ − P

β
αkR

α
jiβ + P

β
αiR

α
kjβ + P

β
αkR

α
ijβ

−ajαP
α
ik + aiαP

α
kj + akiP

α
jα − akjP

α
iα).

(6)

Plugging (5) and (6) to (4) we find

aik,j = 1
(n− 1)(n+ 2)

[n(P α
ikRαj − P

β

α(kR
α
i)jβ) +Rα(kP

α
i)j − P

β
αjR

α
(ik)β − P

β

α(iR
α
|j|k)β

+(n+ 1)(aj(iP
α
k)α − aα(iP

α
k)j + 2(aikP

α
jα − ajαP

α
ik)].

(7)

Obviously, the equations (1) and (7) in the given space An respresent a Cauchy system
in the functions P h

ij(x) and aij(x) which, naturally, must satisfy also the following system of
conditions of an algebraic character

P h
ij(x) = P h

ji(x), aij(x) = aji(x). (8)

Hence we have proved:

Theorem 3.3 A manifold with affine connection An admits almost geodesic mappings, satis-
fying the equation (1), onto a manifold with affine connection Ān if and only if there exists, in
An, a solution of the mixed system of Cauchy type (1), (7) and (8) in the functions P h

ij and aij.

It is proved that the number of relevant parameters on which the solution of a system under
consideration depends has the upper boundary

r ≤
1

2
n(n+ 1)2.
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4 An example of a particular subclass of the first type AGM

It the tensor aij vanishes identically the equation (1) reads

P h
ij,k = −P α

ijP
h
αk. (9)

The equations (9) are completely integrable in a manifolds with affine connection. That is,
the system is solvable for any initial conditions P h

ij(x0). If we choose initial values satisfying
P h

ij(X0) 6= δh
(iψj)(x0) then the obtained solution determines an almost geodesic map of the first

type of an affine space An onto an affine space Ān that is not a geodesic one. Hence we have
as a consequence

Theorem 4.1 There exists an almost geodesic map of the first type of the affine space onto
itself under which all straight lines are mapped onto plane curves not all of which are straight
lines.

Let (x1, . . . , xn) and (x̄1, . . . , x̄n) be affine coordinates in affine spaces An and Ān, respec-
tively. We give here a particular example of an almost geodesic map of the first type of a flat
space An onto a flat space Ān as follows. Pointwise, the map is given in coordinates by

x̄h =
1

2
Ch

α (xα − Cα)2 + xh
0 , (10)

where Ch
i , Ch, xh

0 are constants such that xh 6= Ch, det(Ch
i ) 6= 0. It can be checked directly

that the only non-zero components of the deformation tensor are

P i
ii =

1

xi − Ci
, i = 1, . . . , n.

It can be verified that the tensor P h
ij with such components satisfies (9). At the same time,

we realize that the map just constructed belongs neither to the type π2 nor π3. Under this
mapping, straight lines of the space An, given by parametrizations xh = ah + bht where t is a
parameter, are mapped onto parabolas in Ān given by the equations

x̄h = Dh + Eht+ F ht2

where Dh = 1
2
Ch

α(aα −Cα)2, Eh = 1
2
Ch

α(aα −Cα)bα, and F h = 1
2
Ch

α(bα)2. The only exceptions
come for those straight lines for which the vectors Eh and F h happen to be collinear: if this is
the case the image of such a line is a straight line again.

Finally let us note that the equations (10) generate a system of almost geodesic maps of
type π1 of a flat space if we consider the coefficients Ch

i , Ch and xh
0 to be continuous parameters.
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