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Development of the fuzzy sets theory: weak operations and extension
principles

The paper considers the problems that arise when using the theory of fuzzy sets to solve applied problems.
Unlike stochastic methods, which are based on statistical data, fuzzy set theory methods make sense to
apply when statistical data are not available. In these cases, algorithms should be based on membership
functions formed by experts who are specialists in this field of knowledge. Ideally, complete information
about membership functions is required, but this is an impractical procedure. More often than not, even
the most experienced expert can determine only their carriers or separate sets of the a-cuts for unknown
fuzzy parameters of the system. Building complete membership functions of unknown fuzzy parameters
on this basis is risky and unreliable. Therefore, the paper proposes an extension of the fuzzy sets theory
axiomatics in order to introduce non-traditional (less demanding on the completeness of data on membership
functions) extension principles and operations on fuzzy sets. The so-called a-weak operations on fuzzy
sets are proposed, which are based on the use of separate sets of the a-cuts. It is also shown that all
classical theorems of Cantor sets theory apply in the extended axiomatic theory. New extension principles
of generalization have been introduced, which allow solving problems in conditions of significant uncertainty
of information.

Keywords: Cantor set, fuzzy set, function of belonging, set of a-cut, core of fuzzy set, a-weak operation.

Introduction

It is well known that the concept of a fuzzy set, proposed by L. Zadeh in 1965 [1]|, immediately
arouse great interest among mathematicians and scientists of other fields and stimulated the appearance
of a large number of works in this direction. Just two years later, Gauguin extended this concept to
L-fuzzy sets, and further introduced the interval fuzzy line, regular fuzzy numbers and fuzzy metric
spaces, fuzzy topological spaces, fuzzy relations and mappings, concepts and theorems of fuzzy algebra
[2-11]. All these works with slight variations are based on the well-known maximin extension principle
(MMPG) Zadeh [1], which fully satisfied the researchers. The mathematical apparatus of fuzzy set
theory (FST) began to be widely used both in physics [12,13] and in applied disciplines [14-18]. At the
same time, there are quite a few applied problems for which the use of the maximin extension principle
prevents their solution. The fact is that the application of MMPG requires complete information about
the membership functions of fuzzy defined parameters of the task, and this, unfortunately, is often the
almost impossible procedure. In these cases, even the most experienced expert can determine only
their cores or a-cuts for the unknown fuzzy parameters of the system. Building complete membership
functions of unknown fuzzy parameters on this basis is risky and unreliable.

Thus, it seems appropriate to expand the axiomatics of the fuzzy sets theory in order to introduce
non-traditional (less demanding on the completeness of data on membership functions) extension
principles and operations on fuzzy sets. In works [19,20], an unconventional class of so-called a-weak
operations on fuzzy sets was proposed for the first time, further, introducing new concepts, we will
follow these works.
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Statement of the problem

All problems with uncertain parameters, which should be solved using fuzzy set theory methods,
can be divided into two classes:

1. Problems with non-numerical input parameters.

In these problems, each of the non-numerical parameters corresponds to a certain logical variable
(term), to which the expert assigns a membership function (performs fuzzification), then certain
procedures are carried out with the assigned membership functions, and the defuzzification procedure
is applied to the new membership functions obtained as a result. As a rule, the quality of these
calculations significantly depends on the knowledge of experts in the subject of research and on the
adequacy of fuzzification and defuzzification procedures.

2. Problems with non-numerical input parameters.

As arule, it is advisable to solve such problems using the methods of probability theory, but for this
the researcher must have a sufficient amount of reliable statistical data. If these data are not available,
or their number is very small, then it makes sense to apply the methods of fuzzy set theory. In this
case, the uncertain parameters are given by vague numbers, the membership functions of which are
formed by experts who are specialists in this field of knowledge.

The main problem of these methods is that even the most experienced expert can determine only
their cores or a-cuts for unknown fuzzy parameters of the system. Building complete membership
functions of unknown fuzzy parameters on this basis is risky and unreliable.

Therefore, the task of expanding the axiomatics of the fuzzy sets theory in order to introduce non-
traditional (less demanding on the completeness of data on membership functions) extension principles
and operations on fuzzy sets is actual. For this, the authors propose to introduce the so-called a-weak
operations on fuzzy sets, which are based on the use of a-cuts.

Research results

Let’s consider the basics of weak operations axiomatics. The a-cut set of the fuzzy set A defined
on the universum X is the usual Cantor set of elements x € X, for which the condition p;(z) > «
is fulfilled, where o > (0,1]. The limiting case of the a-cut set is the so-called core (or, otherwise,
the 0-cut) of the fuzzy set A, which is also a Cantor set of elements z € X for which the condition
pi(x) > 0 is fulfilled.

It is known that every operation on classical Cantor sets can be matched with many similar
operations on fuzzy sets. There is only one mandatory condition that each of these operations must
meet - they must reduce to the corresponding classical operation in the case of degeneracy of fuzzy
sets to classical Cantor sets.

Obviously, that weak operations on fuzzy sets must have the same properties as the analogical ones
on classical Cantor sets, that is the same theorems must be fair for them as for classical sets. Let’s
consider it on the example of the relation of loose inclusion. L. Zadeh defined this relation as: fuzzy set
A, which is defined on the universum X, if and only if includes fuzzy set B, defined on this universum,
when for all elements x € X the membership function g ;(x) is more or equal to the membership
function p 5

AQB@V:UEX(MA(:U)ZMB(@). (1)

From the fuzzy theory point of view, the membership function of the classical Cantor set A in X
looks like p4 : X — {0,1}, and for the set A we can write

A={(z,pa(z)) |V e X(x € A= pa(z) =1)}.
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The definition of relation of inclusion for classical sets A and B, expressed through their membership
function is formulated as: classical set A, defined on the universum X, if and only if includes classical
set B, defined at the same universum, when for all elements x € X, if up(x) = 1, then and pa(x) =1,
that is

ADBeVre X(up(z)=1= palz) =1). (2)

The definition, which lessens the demands to the membership functions p;(x) and pz(z) in
comparison with (1), doesn’t demand the condition p z5(x) > pg(x) to be carried out, and is based on
the sets of a-cuts of fuzzy set (which are the commom Cantor sets) and is suggested being called loose

[e% ~
a-weak inclusion (is marked D) and analogically can be formulated as (2): fuzzy set A, that defined on
the universum X, a-weakly includes fuzzy set B, defined on the same universum, if and only if when
for all elements x € X, if uz(x) > «, then and p;3(x) > o, or

flgB@VaceX(,uB(:n)Zaéug(:n)ZOz).

In boundary case, the relation which is based on the cores of fuzzy sets fl, B is offered to call just

0
loose weak inclusion or loose O-weak inclusion (is marked 2). Its definition can be formulated as: fuzzy
set A, defined on the universum X, if and only if 0-weakly includes fuzzy set B, defined on the same
universum, when for all elements x € X, if ugz > 0, then and 5 > 0, or

0 -
ADB&VreX (ug(x) >0= pyi()>0).
Let’s introduce the definition of the a-weak supplement operation. The traditional supplement of
the fuzzy set A in X is the accepted fuzzy set A is X, for which the following condition is carried out

Vre X (u~(:v) —1- m(@) .

A

For classical Cantor sets, the supplement of set A is considered to be the set A, that is
Vo € X (pa(z) =1 pg(z) =0). (3)

Analogically to (3) the definition of operation of a-weak supplement is offered to formulate as:
o

fuzzy set A in X is a-weak supplement of fuzzy set A in X if and only if, when for all elements z € X,
if p15(x) > «, then po(x) < a, and vice versa, that is
A

VxEX(,uA(x)Zoz(:)ua(m)<a>. (4)

A

It follows from (4) that

VxEX(uA(:):)<a<:>ug(x)Za>.
A

Analogically to the definition (4) for the operation of weak supplement (or 0-weak supplement) we
0

can write: fuzzy set A in X is a weak supplement of fuzzy set A in X if and only if, when for all the
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elements = € X, if pu;(x) > 0, then po(z) = 0, and vice versa, that is

A

Ve e X /u(a:)>()<:>u9($):0 . (5)

A

It follows from (5) that

Vee X | pi(z) =0 po(z) >0

A

The definition for the relation of a-weak equation between fuzzy sets A, B in X is formulated as:
fuzzy set A, defined on the universum X, a-weakly equal to fuzzy set B, defined on this universum, if
and only if, when for all the elements x € X, if 7 > 0, then and pa(z) = 0, and vice versa, that is

A
A%B(:)VxeX(,uB(x) >a e pi(z)>a).
For a weak equation (0-weak equation) we can write
flgéﬁwseX(uB(x) >0 pg(z) >0).

Let’s consider the definition for other main relations between fuzzy sets and operations on them.
It is suggested that a-weak combination of fuzzy sets A and B in X is the fuzzy set C = A U B in
X, if and only if, when for all elements x € X, if ps(2) > o then pz(x) > o or pz(x) > a, and vice
versa, that is
CN’%ASJB<:>V:BGX(#@(3:) >as pir)>aVug(z)>a).

~ ~ ~ ~ 0 =~
Analogically, weak (0-weak) association of fuzzy sets A and B in X is the fuzzy set C S AUBin
X if and only if, when for all elements 2 € X, if ps(z) > 0 then pz(x) > 0 or pg(x) > 0, and vice
versa, that is

~ ~ 0 =~
CgAUB@VxGX(,ué(x)>O<:>MA(:L')>O\/MB(x)>O).

At last, a-weak crossing of fuzzy sets A and B in X is the fuzzy set C £ A A B in X if and only
if, when for all elements = € X, if ux~(x) > «, then pz(x) > a and pz(r) > @, and vice versa, that is

C’%A%B@V:EEX(M(}(:B)Zaﬁ,ug(x)Za/\uB(:v)Za).

~ ~ ~ ~ 0 ~
Analogically, a weak (0-weak) crossing of fuzzy sets A and B in X is the fuzzy set C 2 AN Bin
X if and only if p1(x) > 0, when for all elements x € X, if then p ;(z) > 0 and ppz(z) > 0, and vice
versa, that is

~ ~ 0 =~
CgAﬂB<:>Vx€X(,uc~,(x)>O<:)MA(95)>O/\MB(90)>O).

The definition of the more complex operation of the Descartes multiplication of fuzzy sets is
suggested as follows: a-weak Descartes multiplication of the fuzzy sets A; in X is the fuzzy set

A= Al ; /12 ;‘é ; fln nX = X1 xXgx...... X, if and only if, when for all elements
= (x1,22,...,2,) € X, if pz(x) > a, then simultaneously IUAI(Z') > a, MA2($) > a, ...,uAn(:c) >«
and vice versa, that is

Agglgﬁzi...-“;.éjn@
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@9«“:(961,962,---,%)6)((#,4(90) >aspg (@) >2anpg (@) >al-Aug (z) Za).

Accordingly, weak (0-weak) Descartes multiplication of fuzzy sets A; in X is the fuzzy set AL

- 0 -~ 0 0 -

Al X Ag x ...--- x A, in X = X7 x Xog X ...... X, if and only if, when for all elements x =
(x1,72,...,2n) € X, if pg(x) > 0, then simultaneously pz (z) >0, pg (z) >0, ...,uz (z) >0, and
vice versa, that is

~0 ~ 0 ~ 0 0 -
A=A XAy x ...--- X A, &
@x:(xl,acg,...,a:n)eX(uA(:c)>0<:),LLA1(:I:)>0/\MA2(:1:)>0/\-~/\uAn(a:)>0>.

If we analyze all the above definitions of a-weak operations, we can come to the conclusion that
the results of a-weak operations are ambiguous. Unlike traditional operations on fuzzy sets, the result
of any a-weak operation is not a specific fuzzy set, but a set of fuzzy sets, each of which satisfies given
conditions. This ambiguity makes it possible to operate with fuzzy sets, the membership functions of
which are not completely specified or are specified imprecisely. Such functions are most often obtained
with the help of expert procedures.

It is obvious that a-weak operations on fuzzy sets should have the same properties as similar
operations on classical Cantor sets, that is, the same theorems as for classical sets should be valid for
them. Let’s formulate and prove analogical theorems for a-weak operations.

Theorems of idempotency.

Theorem 1. Operation of a-weak association is idempotent, that is

ACAL A

Proof. Let’s consider the fuzzy set C = A 0 A X. According to the definition of the operation of
a-weak association for an arbitrary element x € X, we can write p 5(z) > aVpi(z) > a & pi(r) > .
Since the logical operation is idempotent, that is V, then for an arbitrary element x € X, it will be
fair ps(z) > @V pz(x) > a, what had to be proved.

It follows from the theorem 1, that the operation of weak association of fuzzy sets is also idempotent,
that is

~ 0 ~ 0 =~
AUA=A.
By means of analogical considerations we can prove that the operations of a-weak and weak crossing

are idempotent as well, that is

A.

Dy
Do DR
s RN
o e
N

Theorems of distributivenes.
Theorem 2. Operations of a-weak crossing of fuzzy sets is distributive, that is

~ ~ O ~ o ~ X ~ o ~ X ~
Af(BOC)2(AAB)0(AAC).
. a0 /50 = g 7Y~ s 7Y~ 2 7 = o 54 & 3
Proof. Let’s consider C1 = BUC, D1 =ANC1,C2=ANDB,C3=ANC, D2=C2UC(C3.
According to the definitions of the a-weak association and crossing operations for an arbitrary element
x € X we can write

He (1) > a & pgle) > aV pa(@) > o (6)
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ppy (@) 2 a e pi(z) > o pe () > o (7)
o) = e pg(x) =2 aApp(z) > a (8)
teg(r) 2 a e pg(r) > a A pa(r) > a )
1po(T) 2 a & pey(r) 2 aVpg(r) > a. (10)

Having done the substitution of the equivalent expressions for the logical variables s (7) > «a,
Leo(x) > o and p54(x) > o from logical equations (6, 8, 9) into logical equations (7, 10) we obtain

pp () > ae pgi(z) > an (pg(e) > aVps(z) >a),

fip(@) > e (ni(x) > anps(@) >a)V (pilr) > aApa(z) > a).

Since logical operation A is distributive, that for an arbitrary element x € X we can claim, that
p51(x) > a < ppsy(x) > o, what had to be proved.
The operation of weak crossing of fuzzy sets is also distributive, that is

-0 /=0 =\ [+0=\0/~0
it (sbc) e (afe)b(ane),

By means of analogical considerations we can prove that operations of a-weak and weak association
are also distributive, that is

Theorems of involution.

Theorem 3: For any fuzzy set Ain X, the a-weak complement of its a-weak complement is a-weakly
equal to the fuzzy set A, that is

= A

:bz\Q\Q

(64 o
Proof. Let’s consider fuzzy sets B =A and C =B in X. According to the definition of a-weak
complement, for the arbitrary element x € X we can write puz(z) < a < pji(r) > o and pa(r) > a &
ps(x) < a. So, for an arbitrary element x € X the equivalency ps(z) > o < pz(x) > o will be fair,
what had to be proved.
It follows from Theorem 3, that for any of fuzzy sets A in X, the weak complement of its weak
complement is weakly equal to the fuzzy set A, that is

24

:BHO\O

Theorems de Morgan.

Theorem 4. a-weak complement of the a-weak association of the fuzzy sets A and B in X are
a-weakly equals to a-weak crossing of a-weak complement of these fuzzy sets, that is

(A
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a _a a
Proof. Let’s consider fuzzy sets C1 = A 0 B, and C2 2AAB and €3 2C1 in X. According to the
definitions of the corresponding operations, for the arbitrary element z € X we can write

pe (@) 2 a e pg(e) = aVpg(r) > a (11)
Hep(x) Z o pg(a) <aApp(e) < a (12)
He(@) 2 a e e (z) < a. (13)

Taking into consideration that s (z) > o < —ugs (z) > «, let’s do the substitution of the
equivalent expression for the logical variable yi5, () > « from logical equation (11) into logical equation
(13), and as a result we’ll obtain

(@) > a & = (uh(e) > a Vv pgle) > ). (14)

Since pz(z) < a < - (pz(z) > a) and pg(z) < a < = (pz(z) > a), the expression (12) we can
write as
Bea(2) > a e = (ug(2) > a) A= (up(@) > ). (15)

As it follows from the similar logical de Morgan’s law

~(13(@) = @V (o) 2 @) & - (13(2) = @) A= (up(e) 2 a),

and the expressions (14) and (15) we can write j55(2) > a < g, (7) > o, what had to be proved.
It follows from the theorem 4 that the weak complement of the weak association of fuzzy sets A
and B in X weakly equals to the weak crossing of the weak complement of these fuzzy sets, that is

0
0 0.0

(;1 U B) S AAB.

By means of similar considerations we can prove the fairness of the second de Morgan’ theorem for
a-weak and weak operations, namely

0,00
(AnB)2AUE.

Besides above mentioned theorems, in classical theory of sets there are also theorems characterizing
the operations between fuzzy sets and universum or empty set. Let’s check the reality of the similar
theorem for a-weak operations’ class.

Theorem 5. a-weak association of the fuzzy set A in X and the empty set @ a-weakly equals to
the fuzzy set A in X, that is

Abo2A

Proof. Let’s consider fuzzy set B = A 0 @ in X. According to the definition of a-weak association
operation, for the arbitrary element x € X we can write pg(r) > o & pz(r) > aV up(r) > o
Since the definition of an empty set @ pugp(x) = 0, then pz(z) > aV pp(x) = 0 < pz(x) > a. So,
pg(x) > a < ps(r) > o, what had to be proved.

Similarly, the weak association of fuzzy set A in X and the empty set @ are weakly equals to the
fuzzy set A in X, that is

~ 0 0 ~
AU =A.
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Theorem 6. a-weak crossing of the fuzzy set A in X and the empty set @ is a-weakly equal to the

empty set ©, that is
Ainoo.

Proof. Let’s consider the fuzzy set B < A A @ in X. According to the definition of the a-weak
crossing operation, for the arbitrary element € X we can write p5(x) > o & pz(x) > aApg(r) > .
As to the definition of the empty @, that u;(z) > a A pp(z) = 0 & pe(z) = 0. So, ps(r) > a &
to(x) = 0, what had to be proved.

Similarly, a weak crossing of the fuzzy set A in X and the empty set @ weakly equals the empty
set @, that is

~ 0 0
ANo=o.

Theorem 7. a-weak association of the fuzzy set A in X with the universum X a-weakly equals to

the universum X, that is
ADXLX.

Proof. Let’s consider the fuzzy set B = A U X in X. Acccording to the definition of the a-weak
association operation, for an arbitrary element € X we can write pg(z) > a & pji(x) > aVux(z) =
1. As to the definition of the universum for all of the x € X px(z) = 1, that pz(z) > aV px(z) =
1S pux(z) =1. S0, pg(x) > a & pux(r) = 1, what had to be proved.

Similarly, weak association of the fuzzy set A in X with the universum X weakly equal to the
universum X, that is

~ 0
Aux2x.

Theorem 8. a-weak crossing of the fuzzy set A in X with the universum X a-weakly equals the

fuzzy set A in X, that is
ANX LA

Proof. Let’s consider the fuzzy set B = A A X is X. According to the definition of the a-weak
crossing operation for an arbitrary element z € X, we can write ug(z) > a & pji(xr) > aApx(r) > .
As to the definition of universum, for all x € X ux =1, that p;(z) > aAux(z) =16 pi(x) > .
So, pz(r) > o & pz(r) > a, what had to be proved. Similarly, the weak crossing of the fuzzy set A
in X with universum X weakly equals the fuzzy set A in X, that is

~ 0 0o ~
ANX = A

Let’s consider the theorems characterizing a-weak operations between fuzzy sets and their a-weak
complement. There are theorems for the Cantor sets

AUA=X,

ANA=0.

In the traditional theory of fuzzy sets similar theorems are absent.
As for weak operations between fuzzy sets, the following theorem exists.

o

Theorem 9. Weak crossing of the fuzzy set A in X with its weak complement A in X weakly equals
the empty set @, that is

0
~ 0 ~0
ANA= Q.
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0
~ = ~ ~ 0 =~
Proof. Let’s consider fuzzy sets B SAand ¢ 2 AN B X. According to the definition of a-weak
crossing operation, for the arbitrary element x € X we can write

(@) > 0 & py(a) =0, (16)
pe(x) >0 pi(r) >0A pg(r) > 0. (17)

Having done the substitution of the equivalent expression for a logical variable 5 (x) > 0 from the
logical equation (16) into the logical equation (17) we get pua(z) >0 pz(r) > 0A pz(x) = 0.
Since pz(z) > 0A pz(x) = 0 < False, then ps(x) = 0, what had to be proved.

Let’s consider a-weak operations on binary fuzzy relations (BFR). Binary fuzzy relation ([1, X ) -
is a fuzzy set defined on the Descartes square X x X and for which the following is true:

Vo,y € X (pgi(z,y) €[0,1]).

Since BFR is a common fuzzy set and the only difference is that its elements are the ordered pairs
of the Descartes square of the universum X, then for BFR all introduced beforehand a-weak operations
occur (association, crossing, complement, difference etc). At the same time, for BFR one can introduce
additionally operations which are absent for ordinary fuzzy sets. Therefore there is an inverted relation,
its definition is in the traditional theory is written as:

(121_1, X) is the inverted relation to ([1, X) if andonly if, when

Va,y € X (pja(y, x) = pgil,y)) -

Following the principles of building the class of weak operations, for the a-weak inverted relation
we can write:

<f~11, X) 1s a — weak inverted relation to ([1, X) if and only i f, when

Vr,y € X (pja(y,2) > as pi(z,y) >0).
Accordingly,

0
([ll, X) 1s a — weak inverted relation to (fl, X) if and only if, when

Yo,y € X (pz(y,2) >0 < py(e,y) >0).
Let’s formulate the definition for a weak composition of fuzzy relations. Traditional maximin

composition of fuzzy relations is formulated as: fuzzy relation (/Nll oAy, X ) is a maximin composition

of fuzzy relations (1211, X) and (1212, X) as to the definition if and only if the, when

Vo,y € X (uglog2(rc,y) = Mgfgl)\gin(ml(x, ), b4, (2, y))) -

~ O
The definition for the a-weak composition can be written as: fuzzy relation <A1 6 Ag, X ) is the

a-weak composition of fuzzy relations (/11, X ) and ([12, X ) according to its definition if and only if,

when

Ve,ye X <MA10A2(93’?J) >ae Iz e X(ug, (2,2) > aApg (2,y) > a> ,a € (0,1]. (18)
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-~ 0 .
It follows from (18) that fuzzy relation <A1 S Ay, X ) is the a-weak composition of fuzzy relations

(fll, X) and (AQ,X) if and only if, when

Vr,y € X (,uAIOAQ(a:,y) >0& dz€ X(ug (w,2) >0Apg,(2,9) >0) ,a € (0,1].

Let’s proceed to the fuzzy sets reflections and the extension principles. As it is known the extension
principles is the way of defining the image of fuzzy set under crisp or fuzzy reflection. There can be
many such methods, but all of them must satisfy two conditions:

1. The image of any fuzzy set, regardless of the nature of the reflection, is also a fuzzy set.

2. Any extension principle should not contradict the definition of a clear representation of classical
Cantor sets.

The definition of the maximin of extension principle, the most widespread in the traditional theory
of fuzzy sets, for the crisp reflection of fuzzy sets can be formulated as follows: fuzzy set f (fl) inY is
the image of the fuzzy set A in X under crisp reflection f : X — Y according to the definition if and
only if, when

e (i = Mar ni@). (19)
where f~!(y) is the proimage of the element y € Y under crisp reflection f: X — Y.

Maximin of extension principle for fuzzy reflection of the fuzzy sets one can be written as: fuzzy
set f (A) in Y is the image of the fuzzy set A in X under fuzzy reflection f : X — Y according to the
definition if and only if, when

e ¥ (1zen ) = MazdinGu ). ngo.) ). (20)
where u FrXxY — (0,1] - membership function of fuzzy reflection f: X — Y.

Let’s formulate the extension principles for crisp and fuzzy reflections of fuzzy sets that are more
general than (19, 20) and less demanding on the completeness of data on membership functions.

The definition of a-weak extension principle for crisp reflections of fuzzy sets is formulated as: fuzzy
set f (A) in Y is the a-weak image of fuzzy set A in X under crisp reflection f: X — Y according to
the definition if and only if, when

Vyeyvy (uf(,a)(y) >ae Iz e fHy)(us(e) = a)) :

where f~1(y) is the proimage of the element y € Y under crisp reflection f: X — Y.

Accordingly, for the principle of weak extension for crisp reflections of fuzzy sets we can write: fuzzy
set f ([1) in Y is a weak image of fuzzy set A in X under crisp reflection f : X — Y according to the
definition if and only if, when

vy e Y (nynw) >0 3z e F @) al) > 0).

The definition of a-weak extension principle for fuzzy reflections of fuzzy sets can be written as:
fuzzy set f(A)in Y is the a-weak image of fuzzy set A in X under fuzzy reflection f : X — Y according
to the definition if and only if, when

Vyey (Mf(A)(y) >aedve X(pg(r) = o) App(z,y) = a) :

where [ X xY — (0,1] - membership function of fuzzy reflection f:X—Y.
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Accordingly, for the principle of weak extension for the fuzzy reflections of fuzzy sets we can write:
fuzzy set f(A) in Y is a weak image of fuzzy set A in X under fuzzy reflection f : X — Y according
to the definition if and only if, when

VyEY(uf(A)(y) >0 Jz e X(ui(z) >0)Aps(z,y) >0).

Conclusions

1. There is a large number of applied problems for which the use of the maximin extension principle
hinders their solution, since its application requires complete information about the membership
functions of vaguely defined parameters of the problem, and this is often a practically impossible
procedure. In these cases, even the highest-level expert can determine only cores or a-cuts for the
unknown fuzzy parameters of the system. Building complete membership functions of unknown fuzzy
parameters on this basis is risky and unreliable.

2. The axiomatics of the theory of fuzzy sets have been extended in order to introduce non-
traditional (less demanding on the completeness of data on membership functions) extension principles
and operations on fuzzy sets. The so-called a-weak operations on fuzzy sets are proposed, which are
based on the use of a-cuts.

3. The axiomatics of weak operations is constructed so that each of these operations reduces to the
corresponding classical operation in the case of degeneracy of fuzzy sets to classical Cantor sets.

4. For weak operations on fuzzy sets, the same theorems as for classical sets are valid, namely,
theorems of idempotency, distributivity, involution, de Morgan and others.

5. Weak operations are introduced not only for fuzzy sets, but also for binary fuzzy relations, which
made it possible to construct the principles of weak extension. All this makes it possible to use the
mathematical apparatus of fuzzy sets to solve problems in conditions of significant uncertainty of input
information.
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AHBIK eMec >KUbIHJAP TEOPULACHIHBIH, JaMYbI: 9JICI3 oHepalisijiap

2K9HE 2KaJINbljIay MPUHITAIITEPI

ZKymMmbIcTa KoJI1aHOa bl ecenTep/li IIeNTy YIIIiH aHbIK eMeC *KUBIHAP TEOPHUSCHIH NaliTaJaHy Ke3iH/e TybIH-
JAUTBHIH Moceserep KapacThipbuirad. CTaTUCTUKAJBIK, TEPEKTEPTe HEri3ereH CTOXaCTUKAJIBIK, 9/1iICTEP/IeH
aflBIPMAIIBLUIBIFBI, CTATUCTUKAJIBIK JIePEKTep OOoJIMaraH Ke3Je aHBIK eMeC KUBIHIAD TEeOPUSIChI dicTepiH
KOJIZJAHFaH 2KeH. ByJ1 rkarnaiiyiapzia ajJropuTMIep OChl OLIiM castachIHIAFbl MaMaHIap O0JIbII TaObIIATHIH
capalmbLIap YKacaraH THUICTUNK (DYHKIUSICBIHA Heri3enyi Kepek. EH JypbIChl, THICTITIK QyHKIMSIAPDI
TypaJbl TOJBIK aKlapar KaxKeT, Oipak OyJl IpaKTUKAJBIK Mporeaypa emec. Kebinece, TinTi eH ToxXipu-
Oesli MaMaH TeK OJIAP/bIH TachIMAJIIAyIILIIAPBIH HeMece Oenrici3 Oy/IBIHFBID »Kyiie mapamerpJsiepi YImiH
Q-JIeHreilinig, 0eJIeK YKUBIHTBLIKTAPbIH aHbIKTal ajagabl. Ocbl Herizme 6elrici3 aHbIK eMec HmapaMeTpPJIePIiH
TOJIBIK, THICTIIK DYHKIUSIAPBIH KYyPY TOyEKeJ i skoHe ceHiMmcis. COHIBIKTAH MAaKAJIala AHBIK €MEeC KUbIH-
Jlap TEOPUSICBHIHBIH aKCHOMATHUKACHIH KEHEHTY YCHIHBLIAAbI (THICTLIIK (DyHKIMAIAD TYPAIbl AePEKTEPIiH
TOJIBIKTBIFBIH TAJIAI €TIEATIH) YKAJITIBLIAY/IbIH KOHE AHBIK, €MeC >KUBIHIAPIAAFbI ONEPAIUIADIBIH, TTPUH-
nunTepin eHrisdy. Besek «-meHreisl »KublHmapAbl KOJIIaHyFa HETI3JEreH AHBIK e€MeC YKUBIHIAPIAFbl (-
9JICI3 JIell aTajaThiH amaJiiap yebiHbLIFaH. CoOHJIall-aK, KEHeHTIITeH aKCHOMATUKAJIBIK, Teopusiia KaHTop-
JIBIH, YKUBIHIAP TEOPUSICHIHBIH, OAPJIBIK, KJIACCUKAJBIK, TEOPEMAIAPBIH KOJIaHyFa OOJATHIHBI KOPCETLITEH.
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AxKnapaTThiH, MaHBI3IbI OEITICI3AIr XKaraaliblHIa MaCeIeIep Il MIeNlyre MyMKIHAIK OepeTiH >KaHa »KaJIIlbl-
Jilay TPUHITUIITEP] €Hri3Ii.

Kiam cesdep: KaHTOp KUBIHBI, aHBIK €MeC YKUBIH, THICTLTIK QYHKINS, Q-JTeHTeI XKUBIH, AaHBIK, €MeC YKUbIH-
JIbI KOJIJIAY, (--9JICI3 Omepariusi.
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PasBurne Teopum HeUYeTKUX MHOXKECTB: CJIabble onepamuyu 1
IPUHIINOBI 0000IITeHMSI

B pabore paccmorpenbl mpobsieMbl, BOSHUKAIOIIUE MIPYU UCIOJIB30BAHUU TEOPUM HEYETKUX MHOMKECTB JIJIsi
pelteHnsi TPUKJIAIHBIX 3a7ad. B oTiindme OT CTOXaCTHYECKUX METOJIOB, OCHOBAHHBIX HA CTATHUCTUIECKUX
JAQHHBIX, METO/bI TEOPUH HEUYETKUX MHOXKECTB I1€/1eCO00Pa3HO MPUMEHSATDH, KOI/Ia CTATUCTUIECKUE JTAHHBIE
HEJIOCTYIHBI. B 3THUX CiiydasX ajJrOpUTMBI JIOJIKHBI OCHOBBIBATBCST HA (DYHKIIUSAX MPUHAIJIEXKHOCTH, (DOp-
MHUPYEMBIX IKCIIEPTAMHU, SIBJISIONIMMUCS CIEINAIUCTAMI B JTaHHOIN obsiacTu 3HaHuil. B maease Tpebyercs
noJiHast nHGoOpMaIus 0 PYHKIUSX TPUHAIIEXKHOCTH, HO 9TO HEITpAKTUIHAs IIPoIeypa. Jarie Bcero gaxe
CaMBbIil ONBITHBIN CIEIUAIUCT MOYKET OIPEE/IUTh TOJTBKO X HOCUTENH WJIH OTAE/IbHBIE HAOOPHI (-YPOBHSI
JIJIsI HEU3BECTHBIX HEYETKUX [TapaMeTPOB cucTeMbl. IlocTpoenne Ha 9TOM OCHOBE MTOTHBIX (DYHKIWI TPUHA-
JIEYKHOCTH HEU3BECTHBIX HEUYETKHUX [TapaMeTPOB PUCKOBAHHO M HeHa 1e2KHO. [[oaTOMy B cTaThe Ipe/jI0sKeHbI
PACIIIPEHNE AKCHOMATHKHA TEOPUM HEIETKUX MHOXKECTB C HEJbIO BBEJICHUs HETPAIUIMOHHBIX (MEHEE Tpe-
6OBATEJILHBIX K [IOJHOTE JAHHBIX O (DYHKIMAX IPUHAIJIEXKHOCTH ) IPUHIMIOB 00O0IEHNsT ¥ ONePAIHii HAL
HEYEeTKUMH MHOXKECTBAMU, & TAKXKe TaK Ha3bIBaeMble (-CJIabble Ollepallii HaJ[ HEYEeTKHUMU MHOXKECTBAMU,
OCHOBAHHBIE HA WCIIOJIb30BAHUU OT/ETHHBIX MHOXKECTB (-ypoBHsI. Kpome TOro, mokazaHo, ITO BCE KJIac-
CHYecKrne TeOpeMbl TeOpUHM MHOXKeCcTB KaHTopa IpUMEHWMBI B PACIIMPEHHON aKCHOMATHYECKOH TeOopHu.
BBeienbl HOBBbIE IPUHITUIIBI 0606IIIEHNSI, TIO3BOJISIFOIINE PelllaTh 3aJa49i B YCJIOBUIX 3HAYUTE/HHONW HEOIpe-
JIeJIEHHOCTH WHMOOPMAIIHH.

Kmouesvie caosa: muokectBo KanTopa, HeYeTKOE MHOYXKECTBO, (DYHKIMSA TPUHAIEKHOCTH, MHOXKECTBO
Q-yPOBHSI, HOCUTEJIb HEYETKOIO MHOYKECTBA, (-Cjiabasi OIEepaIys.

Mathematics series. No.3(111)/2023 71



