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1. Introduction

In this paper, we further investigate F-planar mappings of spaces with affine connec-
tion. Ideologically, the theory concerning these mappings goes back to T. Levi-Civita’s
work [1], where he posed a problem of finding Riemannian spaces with common geodesic.
He solved this problem in the special coordinate system. This problem is closely related to
another topic, which is the study of the equations of mechanical system dynamics.

Many authors contributed to the development of the theory of geodesic mappings, in-
cluding T. Thomas, H. Weyl, P.A. Shirokov, A.S. Solodovnikov, N.S. Sinyukov, A.V. Aminova,
J. Mikeš, and others. The study of geodesic mappings raised questions many authors ad-
dressed and developed, i.e., V.F. Kagan, G. Vrănceanu, Ya.L. Shapiro, D.V. Vedenyapin, and
others. The listed authors found special classes of (n− 2)-projective spaces.

A. Z. Petrov [2] introduced the concept of quasi-geodesic mappings. Special quasi-
geodesic mappings, in particular, are holomorphically projective mappings of Kaehler
spaces, considered by T. Otsuki, Ya. Tashiro, M. Prvanović, and J. Mikeš et al.

The study continued with a natural generalization of these classes of mappings called
almost geodesic mappings. N.S. Sinyukov introduced almost geodesic mappings [3]. He
also determined three types of almost geodesic mappings, namely, π1, π2, and π3.

As the broadest generalization of geodesic, quasi-geodesic, and holomorphic-procjective
mappings, the F-planar mappings were introduced into consideration by J. Mikeš and
N.S. Sinyukov [4]. At the same time, almost geodesic mappings of the second type π2
are special F-planar mappings. Substantial refinements of the fundamental concepts of
F-planar mappings are in the articles by I. Hinterleitner, J. Mikeš, and P. Peška [5–7].

The above results are presented in a developed form in monographs and re-
searchers, e.g., [8–16].

The theory of F-planar mappings is developed in many works, for example, [17–25].
Our work is devoted to the study of F-planar mappings onto m-symmetric spaces. In this
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case, we find the fundamental equations in a new form. Analogous results were found
for simpler cases in the theory of geodesic and almost geodesic mappings, for example,
[24–33].

In conclusion, we emphasize that the mappings mentioned above were found as diffeo-
morphisms preserving special curves: geodesic, holomorphically projective, and F-planar.
The work of [7] shows the possibility of formulating the definitions as diffeomorphisms that
map all geodesic curves onto the indicated types of curves. Therefore, we can use them to
model the physical processes associated with these curves, which are implicitly described
in the already mentioned works by Levi-Civita [1], Petrov [2], and Bejan, Kowalski [18].
These curves are highly important in physics, especially theoretical mechanics and physics.
The meaning of geodesics is widely known.

The study of the physical properties of special F-planar curves is described in the work of
Petrov [2] (quasi-geodesics) and also currently in the works of Bejan and Druţă-Romaniuc [34]
(magnetic curves). These curves are trajectories of the particles on which forces perpendicu-
lar to the direction of motion act. As a consequence, an operator F can be used to model
magnetic forces.

2. Basic Concepts of the Theory of F-Planar Mappings of Spaces with
Affine Connection

The following definitions and theorems for F-planar mappings are described in detail
in the monograph [15,16] and the review article [6]. The research is conducted locally, in a
class of sufficiently smooth functions.

Consider the n-dimensional space An with torsion-free affine connection ∇, assigned
to the local coordinate system x1, x2, . . . , xn, in which the affinor structure F (i.e., a tensor
field of type (1, 1)) is defined, for which in coordinates Fh

i 6= a · δh
i , where δh

i is the Kronecker
symbol, a is some function.

Definition 1. A curve ` defined by the equation ` = `(t) is called F-planar if its tangent vector
λ(t) = d`(t)/dt( 6= 0) remains, under parallel translation along the curve `, in the distribution
generated by the vector functions λ and Fλ along `.

According to this definition, a curve ` is F-planar if and only if the following condition
holds:

∇λ(t)λ(t) = ρ1(t) λ(t) + ρ2(t) Fλ(t),

where ρ1(t) and ρ2(t) are some functions of the parameter t.
The class of F-planar curves is wide enough. It includes geodesic (if F = ρ Id, where ρ

is a function and Id is the identity operator, or a function ρ2 ≡ 0), quasi-geodesic, planar,
and analytically planar curves.

Let An and An be two spaces with torsion-free affine connections∇ and∇, respectively.
Let F and F be affine structures defined on An and An, respectively.

Definition 2. The mapping π: An → An is called F-planar if any F-planar curve of space An is
mapped onto an F-planar curve of space An.

Let us recall what a deformation tensor is, see [9,15,35]. Consider the affine connection
spaces An and An in a common F-planar coordinate system x1, x2, . . . , xn. The tensor

Ph
ij(x) = Γh

ij(x)− Γh
ij(x), (1)

is called a tensor of the deformation of connections. Here, Γh
ij(x) and Γh

ij(x) are components of

affine connections ∇ and ∇, respectively.
From Theorems 1 and 2 of [4], and more precisely [6,7], see [16] (Chapter 14), it

actually follows that the mapping π: An → An (n > 2) will be F-planar if and only if, for
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the deformation tensor P in the coordinate system x1, x2, . . . , xn, the following equality
holds:

Ph
ij = δh

(iψj) + Fh
(i ϕj),

where ψi(x) and ϕi(x) are some covectors, and the brackets mean symmetrization by the
specified indices without division.

F-planar mapping is called canonical if ψi vanishes. Each F-planar mapping can be
represented as a composition of a canonical F-planar mapping and a geodesic mapping.
The latter can be considered a trivial F-planar.

Thus, canonical F-planar mappings in the common coordinate system x1, x2, . . . , xn

are characterized by the equations

Ph
ij = Fh

(i ϕj). (2)

Suppose that the affinor F defines in the space An an e-structure [9] (p. 177), which
satisfies the condition F2 = e Id, e = ±1, in coordinates:

Fh
α Fα

i = eδh
i . (3)

In this case, F-planar mapping will be denoted π(e).

3. Properties of Vector ϕi

It is known [9] that there is a dependence between the Riemann tensors of spaces An
and An

Rh
ijk = Rh

ijk + Ph
ik,j − Ph

ij,k + Pα
ikPh

αj − Pα
ij P

h
αk. (4)

Given that the deformation tensor of connections (1) has the structure (2), from the
Formula (4) after transformations we obtain

ϕi,jFh
k + ϕk,jFh

i − ϕi,kFh
j − ϕj,kFh

i = Bh
ijk, (5)

where

Bh
ijk = Rh

ijk − Rh
ijk − ϕi

(
Fh

k,j − Fh
j,k + eδh

k ϕj + ϕαFα
k Fh

j − eδh
j ϕk − ϕαFα

j Fh
k
)

−ϕk
(

Fh
i,j + ϕαFα

i Fh
j
)
+ ϕj

(
Fh

i,k + ϕαFα
i Fh

k
)
.

(6)

Note, that the right hand side of the Equation (5) does not depend on the derivatives
of ϕi. Contracting (5) with the affinor Fm

ρ with respect to the indices ρ and h, we obtain

δm
k ϕi,j + δm

i ϕk,j − δm
j ϕi,k − δm

i ϕj,k = eBα
ijkFm

α . (7)

Next, we contract (7) with respect to the indices m and i. As a result, we find

ϕk,j − ϕj,k =
e

n + 1
Bα

βjkFβ
α . (8)

After contraction of (7) with respect to the indices m and k, we obtain

nϕi,j − ϕj,i = eBα
ijβFβ

α . (9)

The Equations (9) after taking into account (8) can be written as

ϕi,j =
e

n− 1
(

Bα
ijβ −

1
n + 1

Bα
βji
)

Fβ
α . (10)

Note that the Formula (10) is obtained for the general case of canonical F-planar
mappings π(e) (e = ±1).

Therefore, we proved the following theorem.
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Theorem 1. The vector ϕi, participating in the Equations (2) of canonical F-planar mappings
π(e), e = ±1 satisfies the conditions (10), where the tensor Bh

ijk is defined by the Formulas (6).

The right part of Equation (10) depends on the unknown tensor Rh
ijk, the unknown

vector ϕi, and the known affinor Fh
i and its covariant derivative Fh

i,k in An.

4. Canonical F-Planar Mappings π(e) (e = ±1) of Spaces with Affine Connection
onto 2-Symmetric Spaces

Space An with affine connection is called (locally) symmetric if the Riemann tensor
in it is absolutely parallel (P. A. Shirokov [36], É. Cartan [37], S. Helgason [38]). That is,
symmetric spaces are characterized by the condition

Rh
ijk;m = 0,

where Rh
ijk is the Riemann tensor of the space An; the sign “ ; ” denotes the covariant

derivative with respect to the connection ∇ of the space An.
Space An is called 2-symmetric [27,39] if the conditions are met for the Riemann tensor

Rh
ijk

Rh
ijk;mρ1

= 0. (11)

Naturally, symmetric spaces are 2-symmetric spaces.
Consider canonical F-planar mappings π(e) (e = ±1) of spaces with an affine con-

nection onto *2-symmetric spaces An, which are characterized by the Equations (2), and
the affinor Fh

i satisfying the conditions (3) is defined in the space An . We assume that the
spaces An and An are related to the common coordinate system x1, x2, . . . , xn.

Because

Rh
ijk;m =

∂Rh
ijk

∂xm + Γh
mαRα

ijk − Γα
miR

h
αjk − Γα

mjR
h
iαk − Γα

mkRh
ijα,

then, given the Formula (1), we can write

Rh
ijk;m = Rh

ijk,m + Ph
mαRα

ijk − Pα
miR

h
αjk − Pα

mjR
h
iαk − Pα

mkRh
ijα. (12)

Based on the definition of the covariant derivative

(
Rh

ijk;m
)

,ρ1
=

∂Rh
ijk;m

∂xρ1
+ Γh

αρ1
Rα

ijk;m − Γα
iρ1

Rh
αjk;m − Γα

jρ1
Rh

iαk;m

−Γα
kρ1

Rh
ijα;m − Γα

mρ1
Rh

ijk;α,

and taking into account the Formula (1), we have(
Rh

ijk;m
)

,ρ1
= Rh

ijk;mρ1
− Ph

αρ1
Rα

ijk;m + Pα
iρ1

Rh
αjk;m + Pα

jρ1
Rh

iαk;m

+Pα
kρ1

Rh
ijα;m + Pα

mρ1
Rh

ijk;α.
(13)

Differentiate (12) by xρ1 in the space An. We obtain(
Rh

ijk;m
)

,ρ1
= Rh

ijk,mρ1
+ Ph

mα,ρ1
Rα

ijk + Ph
mαRα

ijk,ρ1
− Pα

mi,ρ1
Rh

αjk − Pα
miR

h
αjk,ρ1

−Pα
mj,ρ1

Rh
iαk − Pα

mjR
h
iαk,ρ1

− Pα
mk,ρ1

Rh
ijα − Pα

mkRh
ijα,ρ1

.
(14)
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Comparing Equations (14) and (13), we have

Rh
ijk,mρ1

= Rh
ijk;mρ1

− Ph
αρ1

Rα
ijk;m + Pα

iρ1
Rh

αjk;m + Pα
jρ1

Rh
iαk;m + Pα

kρ1
Rh

ijα;m

+Pα
mρ1

Rh
ijk;α − Ph

mα,ρ1
Rα

ijk − Ph
mαRα

ijk,ρ1
+ Pα

mi,ρ1
Rh

αjk + Pα
miR

h
αjk,ρ1

+Pα
mj,ρ1

Rh
iαk + Pα

mjR
h
iαk,ρ1

+ Pα
mk,ρ1

Rh
ijα + Pα

mkRh
ijα,ρ1

.

(15)

Taking account of (2) and (12), we might write (15) in the form

Rh
ijk,mρ1

= Rh
ijk;mρ1

+ Θh
ijkmρ1

, (16)

where
Θh

ijkmρ1
= −Fh

(α ϕρ1)

(
Rα

ijk,m + Θα
ijkm

)
+ Fα

(i ϕρ1)

(
Rh

αjk,m + Θh
αjkm

)
+Fα

(j ϕρ1)

(
Rh

iαk,m + Θh
iαkm

)
+ Fα

(k ϕρ1)

(
Rh

ijα,m + Θh
ijαm

)
+Fα

(m ϕρ1)

(
Rh

ijk,α + Θh
ijkα

)
− Fh

(m ϕα),ρ1
Rα

ijk − Fh
(m ϕα)R

α
ijk,ρ1

+Fα
(m ϕi),ρ1

Rh
αjk + Fα

(m ϕi)R
h
αjk,ρ1

+ Fα
(m ϕj),ρ1

Rh
iαk

+Fα
(m ϕj)R

h
iαk,ρ1

+ Fα
(m ϕk),ρ1

Rh
ijα + Fα

(m ϕk)R
h
ijα,ρ1

,

(17)

Θh
ijkm = Fh

(m ϕα)R
α
ijk − Fα

(m ϕi)R
h
αjk − Fα

(m ϕj)R
h
iαk − Fα

(m ϕk)R
h
ijα. (18)

Given the structure of the tensor Θh
ijkm defined by the Formula (18), it is easy to see

that the tensor Θh
ijkmρ1

defined by the Formula (17) depends on the tensors Fh
k , Rh

ijk, ϕk, as
well as on covariant derivatives of the specified tensors by the connection ∇ of the space
An. In this case, the tensor Fh

k is considered to be given, and the conditions (3) are met for
this tensor.

Let us introduce the tensor Rh
ijkm in the following way:

Rh
ijk,m = Rh

ijkm, (19)

Assume that the space An is 2−symmetric. Then, for the Riemann tensor Rh
ijk of this

space, the conditions (11) are met. Taking into account (19) from (16), we have

Rh
ijkm,ρ1

= Θh
ijkmρ1

, (20)

where the tensor Θh
ijkmρ1

is defined by the Formulas (17).

We assume that in (20) the tensors ϕi,j, Rh
ijk,m are expressed in accordance with (10)

and (19).
Obviously, Equations (10), (19) and (20) in this space An represent a system of equa-

tions in covariant derivatives of the Cauchy type with respect to functions ϕi(x), Rh
ijk(x),

Rh
ijkm(x).

The functions Rh
ijk(x) and Rh

ijkl(x) must satisfy algebraic conditions that follow from
the properties of the Riemannian tensor of An:

Rh
i(jk) = 0, Rh

(ijk) = 0, Rh
i(jk)l = 0, Rh

(ijk)l = 0. (21)

Thus, we proved the following Theorem.

Theorem 2. In order that an affine connection space An admits a canonical F-planar mapping
π(e) (e = ±1) onto a 2-symmetric space An, it is necessary and sufficient that in the space An a
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solution exists of a closed mixed system of Cauchy type equations in covariant derivatives (10), (19),
(20), and (21) with respect to functions ϕi(x), Rh

ijk(x) and Rh
ijkm(x).

Obviously, the general solution of the closed mixed system of Cauchy-type equations
in covariant derivatives (10), (19), (20), and (21) depends on no more than

1/3 n2 (n3 + n2 − n− 1) + n

essential parameters.
The proof of Theorem 2 was actually done by us in the work [25] but in a different

form.

5. Canonical F-Planar Mappings π(e) (e = ±1) of Spaces with Affine Connection
onto m-Symmetric Spaces

The space of affine connection An is called m-symmetric if the Riemann tensor Rh
ijk of

this space satisfies the conditions

Rh
ijk;ρ1ρ2 ...ρm = 0. (22)

The m-symmetric spaces are a natural generalization of symmetric and 2-symmetric
spaces [39].

Based on the definition of the covariant derivative

(
Rh

ijk;mρ1

)
,ρ2

=
∂Rh

ijk;mρ1

∂xρ2
+ Γh

αρ2
Rα

ijk;mρ1
− Γα

iρ2
Rh

αjk;mρ1
− Γα

jρ2
Rh

iαk;mρ1

−Γα
kρ2

Rh
ijα;mρ1

− Γα
mρ2

Rh
ijk;αρ1

− Γα
ρ1ρ2

Rh
ijk;mα,

and taking into account the Formula (1), we have(
Rh

ijk;mρ1

)
,ρ2

= Rh
ijk;mρ1ρ2

− Ph
αρ2

Rα
ijk;mρ1

+ Pα
iρ2

Rh
αjk;mρ1

+ Pα
jρ2

Rh
iαk;mρ1

+Pα
kρ2

Rh
ijα;mρ1

+ Pα
mρ2

Rh
ijk;αρ1

+ Pα
ρ1ρ2

Rh
ijk;mα.

(23)

From the Formula (23) based on the Formula (2) and (16), we obtain(
Rh

ijk;mρ1

)
,ρ2

= Rh
ijk;mρ1ρ2

− Fh
(α ϕρ2)

(
Rα

ijk,mρ1
−Θα

ijkmρ1

)
+ Fα

(i ϕρ2)

(
Rh

αjk,mρ1
−Θh

αjkmρ1

)
+Fα

(j ϕρ2)

(
Rh

iαk,mρ1
−Θh

iαkmρ1

)
+ Fα

(k ϕρ2)

(
Rh

ijα,mρ1
−Θh

ijαmρ1

)
+Fα

(m ϕρ2)

(
Rh

ijk,αρ1
−Θh

ijkαρ1

)
+ Fα

(ρ1
ϕρ2)

(
Rh

ijk,mα −Θh
ijkmα

)
.

(24)

Differentiate (16) by xρ2 in the space An. Taking into account the Formulas (24), we
have

Rh
ijk,mρ1ρ2

= Rh
ijk;mρ1ρ2

− Fh
(α ϕρ2)

(
Rα

ijk,mρ1
−Θα

ijkmρ1

)
+ Fα

(i ϕρ2)

(
Rh

αjk,mρ1
−Θh

αjkmρ1

)
+Fα

(j ϕρ2)

(
Rh

iαk,mρ1
−Θh

iαkmρ1

)
+ Fα

(k ϕρ2)

(
Rh

ijα,mρ1
−Θh

ijαmρ1

)
+Fα

(m ϕρ2)

(
Rh

ijk,αρ1
−Θh

ijkαρ1

)
+ Fα

(ρ1
ϕρ2)

(
Rh

ijk,mα −Θh
ijkmα

)
+ Θh

ijkmρ1,ρ2
.

(25)

We introduce the tensors Rh
ijkmρ1

and Θh
ijkmρ1ρ2

and assume

Rh
ijkm,ρ1

= Rh
ijkmρ1

, (26)
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Θh
ijkmρ1ρ2

= −Fh
(α ϕρ2)

(
Rα

ijk,mρ1
−Θα

ijkmρ1

)
+ Fα

(i ϕρ2)

(
Rh

αjk,mρ1
−Θh

αjkmρ1

)
+Fα

(j ϕρ2)

(
Rh

iαk,mρ1
−Θh

iαkmρ1

)
+ Fα

(k ϕρ2)

(
Rh

ijα,mρ1
−Θh

ijαmρ1

)
+Fα

(m ϕρ2)

(
Rh

ijk,αρ1
−Θh

ijkαρ1

)
+ Fα

(ρ1
ϕρ2)

(
Rh

ijk,mα −Θh
ijkmα

)
+ Θh

ijkmρ1,ρ2
.

(27)

Taking into account (26) and (27) from (25), we have

Rh
ijkmρ1,ρ2

= Rh
ijk;mρ1ρ2

+ Θh
ijkmρ1ρ2

. (28)

Let us introduce tensors Rh
ijkρ1ρ2ρ3

,. . ., Rh
ijkρ1ρ2ρ3 ...ρm−2ρm−1

, and let us put

Rh
ijkρ1ρ2,ρ3

= Rh
ijkρ1ρ2ρ3

,

. . .

Rh
ijkρ1ρ2ρ3 ...ρm−2,ρm−1

= Rh
ijkρ1ρ2ρ3 ...ρm−2ρm−1

.

(29)

Using the Equation (28), we covariantly differentiate (m− 2) times with respect to the
connection of the space An, and in the left part we proceed to the covariant derivative with
respect to the connection of the space An using the formula

(Rh
ijk;ρ1 ...ρτ−2ρτ−1

)
,ρτ

= Rh
ijk;ρ1 ...ρτ−2ρτ−1ρτ

− Ph
αρτ

Rα
ijk;ρ1 ...ρτ−2ρτ−1

+ Pα
iρτ

Rh
αjk;ρ1 ...ρτ−2ρτ−1

+ Pα
jρτ

Rh
iαk;ρ1 ...ρτ−2ρτ−1

+ Pα
kρτ

Rh
ijα;ρ1 ...ρτ−2ρτ−1

+ Pα
ρ1ρτ

Rh
ijk;α...ρτ−2ρτ−1

+ · · ·+ Pα
ρτ−1ρτ

Rh
ijk;ρ1 ...ρτ−2α.

(30)

The Formula (30) is derived from (1).
Suppose that the space An is m-symmetric (m > 2). Then, taking into account (22)

and (29) from the equation obtained in this way after substitutions and transformations,
we have

Rh
ijkρ1 ...ρm−2ρm−1,ρm = Θh

ijkρ1 ...ρm−1ρm
, (31)

where Θh
ijkρ1 ...ρm−1ρm

is some tensor depending on unknown tensors ϕi, Rh
ijk, Rh

ijkρ1
, . . .,

Rh
ijkρ1 ...ρm−1

, as well as on some well-known tensors.
Obviously, Equations (10), (19), (20), (26), (29), and (31) form a closed system of

Cauchy type equations with respect to functions ϕi(x), Rh
ijk(x), Rh

ijkρ1
(x), . . ., Rh

ijkρ1 ...ρm−1
(x);

moreover, the conditions of an algebraic nature (21) must be fulfilled and

Rh
i(jk)l1 ...lρ = 0 and Rh

(ijk)l1 ...lρ = 0, ρ = 2, 3, . . . , m− 1. (32)

Thus, we proved the following theorem.

Theorem 3. In order that an affine connection space An admits a canonical F-planar mapping π(e)
(e = ±1) onto an m-symmetric space An, it is necessary and sufficient that a solution of a closed
mixed system of Cauchy-type equations in covariant derivatives (10), (19), (20), (21), (26), (29),
(31), (32) exists with respect to unknown functions ϕi(x), Rh

ijk(x), Rh
ijkρ1

(x), . . ., Rh
ijkρ1 ...ρm−1

(x).

Obviously, the general solution of the closed mixed system of the above mentioned
equations depends on no more than

1/3 n2 (n2 − 1) (1 + n + n2 + · · ·+ nm−1) + n

essential parameters.
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6. Conclusions

The paper deals with F-planar mappings of affine connection spaces with affinor
e-structure onto m-symmetric spaces. We have found the fundamental equations of the
considered mapping, which are in Cauchy form. Therefore, the general solution to this
problem depends on the finite number of real parameters. The number of these parameters
was also calculated.
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34. Bejan, C.L.; Druţă-Romaniuc, S.L. Magnetic curves on cotangent bundles endowed with the Riemann extension. Colloq. Math.

2022, 168, 47–58.
35. Belova, O.O. Connections in fiberings associated with the Grassman manifold and the space of centered planes. J. Math. Sci. 2009,

162, 605–632.
36. Shirokov, A.P. Structures on differentiable manifolds. Itogi nauki: Algebra, topologiya, geometriya. VINITI, Moscow. 1969, 121–188.

Progress Math. 1971, 9, 137–207.
37. Cartan, É. Sur une classe remarquable d’espaces de Riemann I, II. Bull. Soc. Math. Fr. 1927, 55, 114–134.
38. Helgason S. Differential Geometry and Symmetric Spaces; Academic Press: New York, NY, USA, 1962.
39. Kaigorodov, V.R. A structure of space-time curvature. J. Sov. Math. 1985, 28, 256–273.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction
	Basic Concepts of the Theory of F-Planar Mappings of Spaces with Affine Connection
	Properties of Vector i
	Canonical F-Planar Mappings (e)  (e=1) of Spaces with Affine Connection onto 2-Symmetric Spaces
	Canonical F-Planar Mappings (e) (e=1) of Spaces with Affine Connection onto m-Symmetric Spaces
	Conclusions
	References

