
CONFORMAL AND GEODESIC MAPPINGS
ONTO RICCI SYMMETRIC SPACES

BEREZOVSKII Volodymyr (UA), MIKEŠ Josef (CZ), RÝPAROVÁ Lenka (CZ)

Abstract. In this paper, we consider the conformal and geodesic mappings onto Ricci
symmetric spaces. We obtained fundamental equations in the Cauchy type form, which
depend on finite real parameters.

Keywords: conformal mapping, geodesic mapping, Ricci symmetric space, fundamental
equations, Cauchy type differential equations

Mathematics subject classification: Primary 53B20; Secondary 53B22

1 Introduction
Conformal mappings of Riemannian spaces have been reviewed in many papers. These map-
pings have significant applications in the general theory of relativity (for example, [4, 5, 13, 14,
15]).

Further, we assume that the metric of Riemannian spaces is arbitrary, i.e. these spaces are
Riemannian or (pseudo-) Riemannian.

The question is whether the Riemannian space admits or does not allow conformal mapping
onto some Einstein space, reduced by H. Brinkmann [3] to the problem of the existence of a so-
lution to some nonlinear system of Cauchy-type differential equations with respect to unknown
functions. This task is described in detail in the monograph by A.Z. Petrov [13].

In the papers [1, 6, 7, 12], the main equations of these mappings were reduced to a linear
system of differential equations in covariant derivatives of Cauchy type, with the help of which
it was possible to estimate the degree of parametric arbitrariness in the general solution of this
problem. That is, it was possible to establish the degree of mobility of Riemannian spaces with
respect to conformal mappings onto Einstein spaces. In [12], an estimate was obtained of the
first lacuna in the distribution of degrees of mobility of Riemannian spaces, with respect to
conformal mappings, onto Einstein spaces.

As is known [12], conformally flat Riemannian spaces admit maximum values of degrees of
mobility and only they. A criterion in tensor is obtained for spaces other than conformally
flat Riemannian spaces for which the maximum possible degree of mobility is r = n − 1,
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where n is the dimension of the spaces in question (n > 2). Hence, the estimation of the first
lacuna in a distribution of degrees of mobility of Riemannian spaces with respect to conformal
mappings onto Einstein spaces is obtained, and maximally mobile spaces are distinguished from
conformally flat Riemannian spaces with respect to the indicated degrees of mobility.

The paper [6] presents the minimal conditions on the differentiability of geometric objects under
consideration to be satisfied by conformal mappings of Riemannian spaces Vn onto Einstein
spaces. The main equations for the mappings are obtained as a closed linear system in covariant
derivatives of Cauchy-type taking into account the minimal requirements on the differentiability
of metrics of spaces which are conformally equivalent.

The theory of geodesic mappings ideologically goes back to the work of Levi-Civita [9]. He
posed and solved in a special coordinate system the problem of search the proper Rieman-
nian spaces with common geodesics. It is noteworthy that it was related with the study of the
equations of dynamics of mechanical systems. Then the theory of geodesic mappings was de-
veloped in the works of Thomas, Weyl, Shirokov, Solodovnikov, Sinyukov, Mikeš and others,
see [5, 11, 10, 13, 16].

The most famous equations are the Levi-Civita equations obtained by Levi-Civita himself for
the case of Riemannian spaces. Later, H. Weyl obtained the same equations for geodesic map-
pings between spaces with affine connections. N.S. Sinyukov [16] (see [10, 11]) proved that the
main equations of geodesic mappings of (pseudo)-Riemannian spaces are equivalent to some
linear system of equations of Cauchy-type in covariant derivatives.

In [2], these results are generalized to the case of geodesic mappings of equiaffine spaces with
affine connections onto (pseudo)-Riemannian spaces.

In this paper, the main equations of conformal and geodesic mappings of Riemannian spaces
onto Ricci symmetric Riemannian spaces are obtained in the form of closed-systems of Cauchy-
type equations in covariant derivatives.

We established the number of essential parameters on which the general solutions of the found
systems of equations of Cauchy-type in covariant derivatives depend.

We suppose that all geometric objects under consideration are continuous and sufficiently smooth.

2 Basic concepts of theories of conformal and geodesic mappings
Consider the map f of the Riemannian space Vn with the metric tensor g onto the Riemannian
space V̄n with the metric tensor ḡ.

Assume that the Riemannian spaces Vn and V̄n assigned to the common coordinate system
x = (x1, x2, . . . , xn).

Mapping f : Vn → V̄n is called conformal if, in the general mapping f and in the coordinate
system x, metric tensors g and ḡ are proportional and for the components of metric tensors there
is a dependence

ḡij(x) = e2ψ(x) · gij(x), (1)

where ψ is a function.

From (1) it follows that under conformal mapping the angles between the tangent vectors of the
curves are preserved. Conformal mappings are fully characterized by this property.

From (1) the following relationship between the Christoffel symbols of the second kind of
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spaces Vn and V̄n follows

Γ̄hij(x) = Γhij(x) + δhj ψi(x) + δhi ψj(x)− ψh(x)gij(x), (2)

where ψi = ∂ψ
∂xi

is a gradient vector, ψh = ghαψα, gijare the components of the inverse matrix
to the matrix gij , δhi is the Kronecker symbols.

A conformal mapping is called homothetic if the functionψ(x) is constant, i.e. ḡij(x) = c · gij(x).
This condition is equivalent to ψi(x) = 0, therefore, such a mapping is also affine.

Recall that in a Riemannian space Vn with the metric tensor gij(x) we define the Riemann
tensor, Ricci tensor, and scalar curvature as follows

Rh
ijk =

∂Γhik
∂xj
−
∂Γhij
∂xk

+ ΓhikΓ
h
αj − ΓαijΓ

h
αk, Rij = Rα

ijα, R = Rαβg
αβ. (3)

It is known [5, 10, 13, 16] that under conformal mappings the Riemann tensors of the spaces Vn
and V̄n are related by

R̄h
ijk = Rh

ijk + δhkψij − δhj ψik + gijψ
h
k − gikψhj +

(
δhkgij − δhj gik

)
·∆1ψ, (4)

where ψij = ψi,j − ψiψj , ψhk = ghαψαk, ∆1ψ = gαβψαψβ , the sign “, ” means covariant
differentiation in Vn.

Contracting (4) by the indices h and k, after transformations we get

ψi,j =
µ

n− 2
gij + ψiψj −

1

n− 2

(
R̄ij −Rij

)
, (5)

where µ is a function.

A curve defined in the space of affine connection An is called a geodesic if its tangent vector is
parallel along it.

A mapping f : An → Ān is called a geodesic if any geodesic of the space An maps onto the
geodesic of the space Ān.

It is known [10, 11, 13, 16] that in order for the map f of the space An to the space Ān to be
geodesic, it is necessary and sufficient that in the coordinate system (x1, x2, . . . , xn) deforma-
tion tensor of connection

P h
ij(x) = Γ̄hij(x)− Γhij(x), (6)

is presented as
P h
ij(x) = ψi(x)δhj + ψj(x)δhi , (7)

where Γhij and Γ̄hij are components of connections An and Ān, ψi(x) is a vector.

A geodesic map is called nontrivial if ψi(x) 6= 0. Obviously, any space An with affine con-
nection admits a nontrivial geodesic mapping onto some other space Ān with affine connection.
Generally speaking, such an assumption is not true with respect to geodesic mappings of Rie-
mannian spaces onto Riemannian spaces. In particular, Riemannian spaces were distinguished
that prevent geodesic mappings on Riemannian spaces.
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3 Conformal mappings of Riemannian spaces to Ricci symmetric spaces
An affinely connected or Riemannian space is called Ricci symmetric if the Riemann tensor in
it is absolutely parallel. Thus, the Ricci symmetric spaces Ān (V̄n) are characterized by the
condition

R̄ij|k = 0, (8)

where sign “|” denotes the covariant derivative in Ān(V̄n), R̄ij are components of Ricci tensor
of space Ān(V̄n).

If the Riemannian spaces Vn and V̄n are assigned to the coordinate map x = (x1, . . . , xn), then
the condition (8) by definition, the covariant derivative can be written in the following form

R̄ij,k = 2ψkR̄ij + ψiR̄jk + ψjR̄ik − ψαR̄iαgjk − ψαR̄jαgik. (9)

It is easy to verify that if the invariant ψ(x) in Vn, the generating gradient vector ψi(x), and
the symmetric tensor R̄ij(x) are a solution of equations (5) and (9), then under the conformal
mapping (1) of the space Vn onto the space V̄n, by if necessary, the space V̄n is Ricci symmetric
and the tensor R̄ij(x) is the Ricci tensor of this space.

Conditions (5) and (9) occur only when

gij(x) ∈ C2, ψ(x) ∈ C2, ψi(x) ∈ C1, µ ∈ C0, Rij(x) ∈ C0, R̄ij(x) ∈ C1. (10)

It follows that ḡij(X) ∈ C2.

It is easy to verify that in the case when Rij ∈ C1, then ψ ∈ C3, ψi ∈ C2 and µ ∈ C1 .
This follows from a modification of the formula (9) and the universal Lemma formulated and
proved in [8], where it is shown that if the equality ∂iλh(x)− µ(x)δhi ∈ C1, then λh(x) ∈ C2

and µ(x) ∈ C1.

Naturally, the equation holds
ψ,i = ψi. (11)

We differentiate (5) with respect to xk in the Riemannian space Vn, and then we alter through
the indices j and k. Given the Ricci identity and the fact that the Ricci tensor is symmetric,
after the transformations we get

(n− 2)ψαR
α
ijk = −gijµ,k + gikµ,j − gαβψα

(
gikR̄βj − gijR̄βk

)
+

Rik,j −Rij,k +Rijψk −Rikψj + µ(gijψk − gikψj). (12)

Then we contract (12) with gij and use the Foss-Weil formula Rij,kg
jk = (1/2)R,i. As a result,

we obtain the equation

(n−1)µ,k = gαβ
[
(n−2)ψγR

γ
βkα−(n−1)ψβR̄αk−ψβRαk

]
+
[
R+(n−1)µ

]
ψk−

1

2
R,k. (13)

Obviously, the equations (5), (9), (11) and (13) in this space Vn are closed Cauchy-type system
with respect to the functions ψ(x), ψi(x), µ(x) and R̄ij(x), and, of course, the conditions of
algebraic character R̄ij(x) = R̄ji(x).

This proves
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Theorem 1 In order for the Riemannian space Vn to conform to the Ricci conformal symmetric
Riemannian space V̄n, it is necessary and sufficient that it contains a solution of a closed system
of equations in covariant derivatives of Cauchy type (5), (9), (11) and (13) with respect to
unknown functions ψ(x), ψi(x), µ(x) and R̄ij(x)(= R̄ji(x)).

Thus, the general solution of the above system of differential equations depends on

(1/2)n(n+ 1) + n+ 2

the initial values of unknown functions at some point x0:

ψ(x0), ψi(x0), µ(x0) and R̄ij(x0) (= R̄ji(x0)),

which, in the general case, are interdependent.

4 Geodesic mappings of spaces of affine connection on Ricci symmetric spaces
Consider the geodesic mappings of affine connected spaces An on Ricci symmetric spaces Ān.
Suppose that the spaces An and Ān are assigned to a coordinate system common in the map.

Since, by definition,

R̄h
ijk|m =

∂R̄h
ijk

∂xm
+ Γ̄hmαR̄

α
ijk − Γ̄αmiR̄

h
αjk − Γ̄αmjR̄

h
iαk − Γ̄αmkR̄

h
ijα,

then given the formula (6), we can write

R̄h
ijk|m = R̄h

ijk,m + P h
mαR̄

α
ijk − Pα

miR̄
h
αjk − Pα

mjR̄
h
iαk − Pα

mkR̄
h
ijα. (14)

Let us contract (14) by the indices h and k. As a result, we obtain

R̄ij|m = R̄ij,m − Pα
miR̄αj − Pα

mjR̄iα. (15)

Since the space Ān Ricci is symmetric, the formula (8) holds, therefore

R̄ij,m = Pα
miR̄αj + Pα

mjR̄iα. (16)

In fact, the formula (16) holds for mappings of any nature with affine connected spaces to Ricci
symmetric spaces.

Considering that the connection strain tensor P h
ij(x) has the structure (7), on the basis of the

formula (16) we have
R̄ij,m = 2ψmR̄ij + ψiR̄mj + ψjR̄im. (17)

It is known [10, 16] that between the Riemann tensors Rh
ijk, R̄

h
ijk affine spaces An and Ān

respectively, there is a dependency

R̄h
ijk = Rh

ijk + P h
ik,j − P h

ij,k + Pα
ikP

h
αj − Pα

ijP
h
αk. (18)

Given that
P h
ij,k = ψi,kδ

h
j + ψj,kδ

h
i ,
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from the formula (18) after the transformations we get

R̄h
ijk = Rh

ijk − δhj ψi,k + δhkψi,j − δhi ψj,k + δhi ψk,j + δhj ψiψk − δhkψiψj. (19)

Let us contract (19) by the indices h and k. As a result, we find

R̄ij = Rij + hψi,j − ψj,i + (1− n)ψiψj. (20)

The equation (20) is alternatable with respect to the indices i and j. We have

R̄[ij] = R[ij] + (n+ 1)ψi,j − (n+ 1)ψj,i, (21)

where [ij] denotes alternation at indices i and j.

From the equation (21) we find

ψi,j − ψj,i =
1

n+ 1

(
R̄[ij] −R[ij]

)
. (22)

From the equation (20), taking into account the equation (22), we have

ψi,j =
1

n2 − 1

[
nR̄ij + R̄ji − (nRij +Rji)

]
+ ψiψj. (23)

Obviously, the equations (17) and (23) in this spaceAn are a closed Cauchy system with respect
to the functions R̄ij(x) and ψi(x).

Thereby proved

Theorem 2 In order for the space of affine connection An to allow a geodesic mapping onto
the Ricci symmetric space Ān, it is necessary and sufficient that it contains a solution of a closed
system of equations in covariant derivatives of the Cauchy type (17), (23) with respect to the
functions R̄ij(x) and ψi(x).

The general solution of a closed system of equations in covariant derivatives of Cauchy type
(17), (23) depends on no more than n (n+ 1) of essential parameters.

The integrability conditions for the equations (17) and (23), respectively, are of the form

(n2 − 1)
(
R̄αjR

α
ikm + R̄iαR

α
ikm

)
− 2(n− 1)

(
R̄km − R̄mk

)
R̄ij−

−n
(
R̄kj − R̄jk

)
R̄im −

(
R̄mi − R̄im

)
R̄kj − n

(
R̄jm − R̄mj

)
R̄ki−

−
(
R̄ik − R̄ki

)
R̄mj +

(
nRjm +Rmj

)
R̄ik +

(
nRim +Rmi

)
R̄kj−

−
(
nRik +Rki

)
R̄mj −

(
nRjk +Rkj

)
R̄im = 0,

(24)

(n2 − 1)ψαR
α
ijk + nψjRik + ψjRki − nψkRij − ψkRji + (n− 1)ψi

(
Rjk −Rkj

)
=

= n
(
Rik,j −Rij,k

)
+Rki,j −Rji,k.

(25)

Obviously, the equation (25) is independent of R̄ij and linear with respect to ψi. The equa-
tion (24) is independent of ψi and when the space Ān is equiaffine, it becomes linear with
respect to R̄ij .
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The space Ān is called equiaffine if the condition Ricci tensor of this space is satisfied

R̄ij = R̄ji.

Thus, the integrability conditions for the equations (17) and (23) of geodesic mappings of spaces
of affine connection An to Ricci, the symmetric equiaffine spaces Ān will be linear with respect
to unknowns functions ψi(x) and R̄ij(x).

The paper was supported by the project IGA PrF 2019015 Palacky University Olomouc.
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