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1 Introduction

Conformal mappings of Riemannian spaces have been reviewed in many papers. These map-
pings have significant applications in the general theory of relativity (for example, [4, 5, 13, 14,
15]).

Further, we assume that the metric of Riemannian spaces is arbitrary, i.e. these spaces are
Riemannian or (pseudo-) Riemannian.

The question is whether the Riemannian space admits or does not allow conformal mapping
onto some Einstein space, reduced by H. Brinkmann [3] to the problem of the existence of a so-
lution to some nonlinear system of Cauchy-type differential equations with respect to unknown
functions. This task is described in detail in the monograph by A.Z. Petrov [13].

In the papers [1, 6, 7, 12], the main equations of these mappings were reduced to a linear
system of differential equations in covariant derivatives of Cauchy type, with the help of which
it was possible to estimate the degree of parametric arbitrariness in the general solution of this
problem. That is, it was possible to establish the degree of mobility of Riemannian spaces with
respect to conformal mappings onto Einstein spaces. In [12], an estimate was obtained of the
first lacuna in the distribution of degrees of mobility of Riemannian spaces, with respect to
conformal mappings, onto Einstein spaces.

As is known [12], conformally flat Riemannian spaces admit maximum values of degrees of
mobility and only they. A criterion in tensor is obtained for spaces other than conformally
flat Riemannian spaces for which the maximum possible degree of mobility is » = n — 1,
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where n is the dimension of the spaces in question (n > 2). Hence, the estimation of the first
lacuna in a distribution of degrees of mobility of Riemannian spaces with respect to conformal
mappings onto Einstein spaces is obtained, and maximally mobile spaces are distinguished from
conformally flat Riemannian spaces with respect to the indicated degrees of mobility.

The paper [6] presents the minimal conditions on the differentiability of geometric objects under
consideration to be satisfied by conformal mappings of Riemannian spaces V,, onto Einstein
spaces. The main equations for the mappings are obtained as a closed linear system in covariant
derivatives of Cauchy-type taking into account the minimal requirements on the differentiability
of metrics of spaces which are conformally equivalent.

The theory of geodesic mappings ideologically goes back to the work of Levi-Civita [9]. He
posed and solved in a special coordinate system the problem of search the proper Rieman-
nian spaces with common geodesics. It is noteworthy that it was related with the study of the
equations of dynamics of mechanical systems. Then the theory of geodesic mappings was de-
veloped in the works of Thomas, Weyl, Shirokov, Solodovnikov, Sinyukov, Mike$ and others,
see [5, 11, 10, 13, 16].

The most famous equations are the Levi-Civita equations obtained by Levi-Civita himself for
the case of Riemannian spaces. Later, H. Weyl obtained the same equations for geodesic map-
pings between spaces with affine connections. N.S. Sinyukov [16] (see [10, 11]) proved that the
main equations of geodesic mappings of (pseudo)-Riemannian spaces are equivalent to some
linear system of equations of Cauchy-type in covariant derivatives.

In [2], these results are generalized to the case of geodesic mappings of equiaffine spaces with
affine connections onto (pseudo)-Riemannian spaces.

In this paper, the main equations of conformal and geodesic mappings of Riemannian spaces
onto Ricci symmetric Riemannian spaces are obtained in the form of closed-systems of Cauchy-
type equations in covariant derivatives.

We established the number of essential parameters on which the general solutions of the found
systems of equations of Cauchy-type in covariant derivatives depend.

We suppose that all geometric objects under consideration are continuous and sufficiently smooth.

2 Basic concepts of theories of conformal and geodesic mappings

Consider the map f of the Riemannian space V,, with the metric tensor g onto the Riemannian
space V,, with the metric tensor g.

Assume that the Riemannian spaces V, and Vj, assigned to the common coordinate system
r= (2t 2% ... 2").

Mapping f: V,, — V,, is called conformal if, in the general mapping f and in the coordinate
system x, metric tensors g and g are proportional and for the components of metric tensors there
is a dependence

Gij(w) = € - gyj(x), (D
where ¢ is a function.

From (1) it follows that under conformal mapping the angles between the tangent vectors of the
curves are preserved. Conformal mappings are fully characterized by this property.

From (1) the following relationship between the Christoffel symbols of the second kind of
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spaces V,, and V}, follows

[l (x) = Ti() + 05i(w) + 6705 (x) — ¥" (2) gy (), 2)

where ¢); = % is a gradient vector, ¥)" = ¢g"*,,, g"/are the components of the inverse matrix

to the matrix g, " is the Kronecker symbols.

A conformal mapping is called homothetic if the function (=) is constant, i.e. g;;(z) = ¢ - g;;(x).
This condition is equivalent to v;(x) = 0, therefore, such a mapping is also affine.

Recall that in a Riemannian space V,, with the metric tensor g;;(z) we define the Riemann
tensor, Ricci tensor, and scalar curvature as follows

. orh  orh

T = ori  Oz*

+ F?k:rgj - F?jrgkv R;; = R}, R = Raggo‘ﬁ. 3)

ijo

It is known [5, 10, 13, 16] that under conformal mappings the Riemann tensors of the spaces V;,
and V,, are related by

Rl = Rl 4 0y — 80 + gigbn — gt + (0 gi — 01 gie) - A, 4)
where 1;; = ¥, — by, Y = ¢"or, A1p = g*Pha1bs, the sign ©, ” means covariant

differentiation in V/,.

Contracting (4) by the indices h and k, after transformations we get

H 1 _
Yij = oo + Vi — _9 (Rij - Rij) ) &)

where 4 is a function.

A curve defined in the space of affine connection A,, is called a geodesic if its tangent vector is
parallel along it.

A mapping f: A, — f_ln is called a geodesic if any geodesic of the space A,, maps onto the
geodesic of the space A,,.

It is known [10, 11, 13, 16] that in order for the map f of the space A, to the space A, to be
geodesic, it is necessary and sufficient that in the coordinate system (z', 22, ..., 2") deforma-
tion tensor of connection

Ph(w) = Tly(x) - Tly(a), ©)
is presented as
Pjj(x) = vi(2)8] + ()7, ()
where F?j and I_“?j are components of connections A,, and A, Yi(x) is a vector.

A geodesic map is called nontrivial if ¢;(x) # 0. Obviously, any space A, with affine con-
nection admits a nontrivial geodesic mapping onto some other space A,, with affine connection.
Generally speaking, such an assumption is not true with respect to geodesic mappings of Rie-
mannian spaces onto Riemannian spaces. In particular, Riemannian spaces were distinguished
that prevent geodesic mappings on Riemannian spaces.
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3 Conformal mappings of Riemannian spaces to Ricci symmetric spaces

An affinely connected or Riemannian space is called Ricci symmetric if the Riemann tensor in
it is absolutely parallel. Thus, the Ricci symmetric spaces A, (V,,) are characterized by the
condition

Rijie =0, (8)
where sign “I” denotes the covariant derivative in A,(V,,), R;; are components of Ricci tensor
of space A,,(V},).

If the Riemannian spaces V,, and V/, are assigned to the coordinate map = = (x',..., "), then

the condition (8) by definition, the covariant derivative can be written in the following form
Rij = 2UnRij + iRy + U3 Rk — ¥ Riagje — ¥ Rjagi- 9)

It is easy to verify that if the invariant ¢)(x) in V,,, the generating gradient vector 1;(x), and
the symmetric tensor Rij(:c) are a solution of equations (5) and (9), then under the conformal
mapping (1) of the space V;, onto the space V,,, by if necessary, the space V}, is Ricci symmetric
and the tensor R;;(z) is the Ricci tensor of this space.

Conditions (5) and (9) occur only when

gl](l') € 02, ¢(£If) € 02, @DZ(.Z') S Cl, [IRS CO, Rl](l') S CO, RZ]<$) € Cl. (10)

It follows that g;;(X) € C*.

It is easy to verify that in the case when R;; € C*, then ¢ € C?, ¢, € C? and p € C*.
This follows from a modification of the formula (9) and the universal Lemma formulated and
proved in [8], where it is shown that if the equality 9;\"(z) — p(z)o" € C*, then \'(z) € C?
and u(z) € C.
Naturally, the equation holds

Vi =i (11)

We differentiate (5) with respect to z* in the Riemannian space V;,, and then we alter through
the indices j and k. Given the Ricci identity and the fact that the Ricci tensor is symmetric,
after the transformations we get

(n = 2)YaRiy = —gijhn + Gty — 9" (9 Rsj — g1 Ror) +
Rik; — Riji + Rijor — Ry + 11(gij0% — girt;)- (12)

Then we contract (12) with g/ and use the Foss-Weil formula R;; ;¥ = (1/2)R ;. As aresult,
we obtain the equation

(n— 1) = g [(n_z)vag,m—(n—1)¢ﬁRak—wﬂRak} n [R—i—(n—l)u] wk—%R,k. (13)

Obviously, the equations (5), (9), (11) and (13) in this space V,, are closed Cauchy-type system
with respect to the functions ¢(z), v;(z), u(z) and R;;(x), and, of course, the conditions of
algebraic character R;;(z) = R;;(x).

This proves
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Theorem 1 In order for the Riemannian space V,, to conform to the Ricci conformal symmetric
Riemannian space V,,, it is necessary and sufficient that it contains a solution of a closed system
of equations in covariant derivatives of Cauchy type (5), (9), (11) and (13) with respect to
unknown functions (), v;(z), u(x) and R;j(z)(= Rji(x)).

Thus, the general solution of the above system of differential equations depends on
(1/2)n(n+1) +n+2

the initial values of unknown functions at some point z:

U(xo), Yi(wo), (o) and  Ryj(xo) (= Rji(wo)),

which, in the general case, are interdependent.

4 Geodesic mappings of spaces of affine connection on Ricci symmetric spaces

Consider the geodesic mappings of affine connected spaces A,, on Ricci symmetric spaces A,,.
Suppose that the spaces A,, and A, are assigned to a coordinate system common in the map.

Since, by definition,

D, aR?J’C mh Do le' «a «
ijklm — oxm +Fma ijk F Rajk F Rzak F kRz]oN

then given the formula (6), we can write

Rlyim = Rl + Py RS — Poi R — P R — PO RE (14)
Let us contract (14) by the indices h and k. As a result, we obtain
Rijim = Rijm — PpyiRaj — PoyiRia. (15)
Since the space A,, Ricci is symmetric, the formula (8) holds, therefore
Rijm = PgRaj + Po i Ria. (16)

In fact, the formula (16) holds for mappings of any nature with affine connected spaces to Ricci
symmetric spaces.

Considering that the connection strain tensor Ph( ) has the structure (7), on the basis of the
formula (16) we have

Rijm = 2meij + %’ng‘ + ijim- (17)

It is known [10, 16] that between the Riemann tensors R}
respectively, there is a dependency

Rl affine spaces A, and A,

ijk?

Rl = Rl + Pl

ik,j

ik = — P!+ PGPk — P3Pl (18)

Given that
’Lj k — wl k‘5 + ¢] k
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from the formula (18) after the transformations we get

R

ijk T
Let us contract (19) by the indices h and k. As a result, we find
Rij = Rij + habij — by + (1 = n)ibaady.
The equation (20) is alternatable with respect to the indices ¢ and j. We have
Ry = Ry + (n+ 1)ty — (n+ 1)y,
where [i7] denotes alternation at indices i and j.

From the equation (21) we find

1

wi,j - 7v/}j,z' = n+ 1

(Rpij) — Rpj)) -

From the equation (20), taking into account the equation (22), we have

1 _ _
lpi’j = 7 1 [TLRU —+ le' — (?IRZ] + Rﬂﬂ + ”Lﬁ{%

n

= Rl — 00+ Spabiy — 00 + Oy + 00 b — Spabab;.

(19)

(20)

1)

(22)

(23)

Obviously, the equations (17) and (23) in this space A,, are a closed Cauchy system with respect

to the functions R;;(z) and v;(z).
Thereby proved

Theorem 2 In order for the space of affine connection A,, to allow a geodesic mapping onto
the Ricci symmetric space A,, it is necessary and sufficient that it contains a solution of a closed
system of equations in covariant derivatives of the Cauchy type (17), (23) with respect to the

functions R;;(x) and 1;(z).

The general solution of a closed system of equations in covariant derivatives of
(17), (23) depends on no more than n (n + 1) of essential parameters.

Cauchy type

The integrability conditions for the equations (17) and (23), respectively, are of the form

(n B 1> (Raﬂ Rzkm + RWRzkm) ( )(ka Rmk)R

—n(Rk;j — Rjk)R' — (Rmz — R, )R (R]m —R,, )R

—(Rir, — Ryi) Rinj + (nRjm + Rynj) R (nRzm + Rung) Rij—
) Rim

— (nRik + Rki) (nRjk + Ry

(n?* — 1)%ka + nY; R + Ry — nkRij — Yp Ry + (n — 1)1/’2‘(Rjk - Rkj) =

= n(Rik,j - Rij,k) + Ry j —

(24)

(25)
Rji,k-

Obviously, the equation (25) is independent of R;; and linear with respect to ;. The equa-
tion (24) is_ independent of 7; and when the space A, is equiaffine, it becomes linear with

respect to 12;;.
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The space A, is called equiaffine if the condition Ricci tensor of this space is satisfied

Rij - R]z

Thus, the integrability conditions for the equations (17) and (23) of geodesic mappings of spaces
of affine connection A, to Ricci, the symmetric equiaffine spaces A,, will be linear with respect
to unknowns functions v;(z) and R;;(z).

The paper was supported by the project IGA PrF 2019015 Palacky University Olomouc.
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