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1 Introduction
Differential geometric aspects of submanifolds of manifolds with certain structures are very
fruitful fields for Riemannian geometry. Study of complex submanifolds immersed in locally
conformal Kähler manifolds (for brevity, LCK-manifolds) was begun by Vaisman in [14],
and more attention was paid to so called Generalized Hopf manifolds. Special mappings of
Kähler and conformal Kähler manifolds were studied in [7, 8, 10, 11]. Certain questions on
conformal mappings and conformal tensor are solved in [5, 6, 9, 12, 13].

We continue to study the immersions of submanifolds that a tangent space in all points of the
submanifolds to be normal to Lee field. Also we explore properties of Lee form of Vaisman
and pseudo-Vaisman manifolds.

2 Preliminaries
A Hermitian manifold (M2m, J, g) is called a locally conformal Kähler manifold
(LCK-manifold) if there is an open cover U =

{
Uα
}
α∈A of M2m and a family {σα}α∈A

of C∞ functions σα : Uα → R so that each local metric

ĝα = e−2σαg|Uα
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is Kählerian. An LCK-manifold is endowed with some form ω, so called a Lee form which
can be calculated as [2]

ω =
1

m− 1
δΩ ◦ J or ωi = − 2

n− 2
Jαβ,αJ

β
i , (1)

The form should be closed:
dω = 0.

One can compute covariant derivative an almost complex structure with respect of the Levi-
Civita connection of (M2m, J, g) using the formulae

Jki,j =
1

2

(
δkj J

α
i ωα − ωkJij − Jkj ωi + Jkαω

αgij
)
. (2)

Let (M2m, J, g) be a complex m-dimensional Hermitian manifold, g is its Hermitian metric,
J is its comlex structure. Consider an immersion of anm-dimensional manifold M̄k inM2m:

Ψ : M̄k −→M2m.

Let ∇ and ∇ be operators of covariant differentiations on M2m and M
k
, respectively. Then

the Gauss and Weingarten formulas are given by [1, p. 2] :

∇XY = ∇̄XY + h(X, Y ), (3)

∇Xξ = −AξX +∇⊥Xξ, (4)

respectively, whereX and Y are vector fields tangent toM
k

and ξ normal toM
k
. h(X, Y ) is

the second fundamental form,∇⊥ the linear connection induced in the normal bundle E(Ψ),
called the normal connection, and Aξ the second fundamental tensor at ξ.

We call M
k
CR− submanifold of (M2m, J, g) if M

k
carries a C∞ distribution D so that

1. D is holomorphic (i.e. Jx(Dx) = Dx) for any x ∈Mk
,

2. the orthogonal complement D⊥ with respect to g = Ψ∗g of D in T (M
k
) is anti-

invariant (i.e. Jx(D⊥x) ⊆ E(Ψ)x) for any x ∈Mk
)[2, p. 153]

Let (M
k
, D) be a CR−submanifold of the Hermitian manifold M2m

0 . Set p = dimCDx and
p = dimRD

⊥
x ; for any x ∈ M

k
such that 2p + q = k. If q = 0 then M

k
is a complex

submanifold, i.e. it is a complex manifold and Ψ is a holomorphic immersion. If p = 0

then M
k

is an anti-invariant submanifold (i.e. Jx(Tx(M
k
)) ⊆ E(Ψ)x for any x ∈ M

k
).

A CR−submanifold (M
k
, D) is proper if p 6= 0 and q 6= 0. Also (M

k
, D) is generic if

q = 2m − k (i.e. Jx(Tx(M
k
)) = E(Ψ)x for any x ∈ M

k
). A submanifold M

k
of the

complex manifold (M2m, J) is totally real if

Tx(M
k
) ∩ Jx(Tx(M

k
)) = {0}

for any x ∈Mk
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3 Complex hypersurfaces of LCK-manifolds

Let submanifold M
k

is immersed in LCK-manifold M2m

Ψ : M̄k −→M2m,

so that k = 2p and for any x ∈M2p

We are concerned with finding conditions under which LCK-manifold M2m admits immer-
sion of complex submanifolds. Then we obtain the following Theorem.

Theorem 1 LCK-manifold M2m admits immersion of complex hypersurface M
2m−2

such
that the Lee field B = ω# and the anti-Lee field A = −JB = −Jω# are normal to the
hypersurface M

2m−2
if and only if the Lee form of M2m satisfies the condition

Φ4(∇Xω(Y )) =
‖ω‖2

2
g(X, Y ).

Here Φ4 is the fourth Obata’s projector:

Φ4(ωi,j) =
1

2
(δai δ

b
j + Jai J

b
j )ωa,b.

Necessity. Let us consider an LCK-manifold M2m. Let θ = ω ◦ J and A = −JB be
respectively the anti-Lee form and the anti-Lee vector field. Then, we can rewrite (2) as

∇X(J)Y =
1

2

(
θ(Y )X − ω(Y )JX − g(X, Y )A− Ω(X, Y )B

)
,

and hence we get

∇XA = −J∇B +
1

2

(
‖ω‖2JX + ω(X)− θ(X)B

)
for any X ∈ T (M2m). Let M2m−2 be a complex hypersurface of an M2m. If B ∈ E(Ψ),
then A ∈ E(Ψ) since the immersion is analytic one. Moreover, if X, Y ∈ T (M2m−2), then
[X, Y ] ∈ T (M2m−2) according to the classical Frobenius theorem. Hence

0 = g([X, Y ], A) = g(∇XY,A)− g(∇YX,A)

= −g(Y,∇XA) + g(X,∇YA) =

= g(Y, J∇XB)− g(X, J∇YB) + ‖ω‖2Ω(X, Y )

(5)

Rewriting (5) in local coordinates, we obtain

ωt,jJ
t
i − ωt,iJ tj − ‖ω‖2Jij = 0. (6)

Next, multiply (6) by J jk :
ωt,jJ

t
iJ

j
k + ωk,i − ‖ω‖2gik = 0. (7)

We can rewrite (7) as
2Φ4(ωi,j)− ‖ω‖2gij = 0.
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where Φ4 is the fourth Obata’s projector [4]. For instance, applying the operator to a tensor
Qh
ij means

Φ4(Q
h
ij) =

1

2
(δai δ

b
j + Jai J

b
j )Q

h
ab.

Hence

Φ4(ωi,j) =
‖ω‖2

2
gij. (8)

Sufficiency. Tangent bundle T (M2m) should satisfy the system since the bundle is normal to
both Lee field B and anti-Lee field A {

ω = 0
θ = 0.

(9)

According to the Frobenius theorem the system (9) is completely integrable if and only if
both Lee-form and anti-Lee form identically satisfy the conditions

1) dω ∧ ω ∧ θ = 0
2) dθ ∧ ω ∧ θ = 0.

(10)

Identity (101) is satisfied since an M2m is LCK-manifold, hence dω = 0. We have to explore
(102). Let us take the exterior differential of the anti-Lee form θ = ω ◦ J [15, p. 6].

dθ =
1

2

(
∇k(ωiJ

i
j)−∇j(ωiJ

i
k)
)
dxk ∧ dxj

=
1

2

(
ωi,kJ

i
j + ωiJ

i
j,k − ωi,jJ ik − ωiJ ik,j

)
dxk ∧ dxj

According to (2) we obtain:

dθ =
(
ωi,kJ

i
j + ωiJ

i
j,k

)
dxk ∧ dxj

=
(
ωi,kJ

i
j + ωi

1

2

(
δikJ

t
jωt − ωiJjk − J ikωj + J itω

tgjk
))
dxk ∧ dxj

=
(
ωi,kJ

i
j +

1

2
ωkJ

t
jωt −

1

2
‖ω‖2Jjk −

1

2
ωtJ

t
kωj
)
dxk ∧ dxj

=
1

2

(
ωi,kJ

i
j − ωi,jJ ik − ‖ω‖2Jjk + ωkJ

t
jωt − ωtJ tkωj

)
dxk ∧ dxj

Then,

dθ ∧ ω ∧ θ =
1

2

(
ωi,kJ

i
j − ωi,jJ ik − ‖ω‖2Jjk

+ωkJ
t
jωt − ωtJ tkωj

)
dxk ∧ dxj ∧ ωldxl ∧ ωsJshdxh

=
1

2

(
ωi,kJ

i
j − ωi,jJ ik − ‖ω‖2Jjk

)
dxk ∧ dxj ∧ ωldxl ∧ ωsJshdxh,

(11)

since the equation

1

2

(
ωkJ

t
jωt − ωtJ tkωj

)
dxk ∧ dxj ∧ ωldxl ∧ ωsJshdxh = 0;

is identically satisfied. Hence the equation

ωi,kJ
i
j − ωi,jJ ik − ‖ω‖2Jjk = 0,
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gives us a sufficient condition for the identity dθ ∧ ω ∧ θ = 0 to be satisfied. The condition
coincides with (6) which is equivalent to (8):

Φ4(ωi,j) =
1

2
‖ω‖2gij.

Hence (102) is satisfied too. Sufficiency is proved.

Taking into account that LCK-manifolds with Lee form which satisfies the condition

Φ4(∇ω(X, Y )) =
‖ω‖2

2
g(X, Y ) (12)

have very particular properties, we propose call such LCK-manifolds as the Pseudo-Vaisman
manifolds.

4 Pseudo-Vaisman manifolds
Let us discover the condition (12). An LCK-manifold is a Hermitian since its almost complex
structure is integrable. This means the existence of the coordinate system in which J and
metric g take correspondingly the forms

(J ij) =

(√
−1δκλ 0
0 −

√
−1δκ̂

λ̂

)
, (gij) =

(
0 gµλ̂
gµ̂λ 0

)
.

In the system of coordinates we can rewrite (12) as

ωα,β̂ =
‖ω‖2

2
gαβ̂. (13)

One knows that the components of the connection with respect to the Hermitian metric gij
by formulas [15, p. 64]

1) Γκµλ =
1

2
gκρ̂
(
∂µgλρ̂ + ∂λgµρ̂

)
, conj.

2) Γκ
µλ̂

=
1

2
gκρ̂
(
∂λ̂gµρ̂ − ∂ρ̂gµλ̂

)
, conj.

3) Γκ
µ̂λ̂

= 0, conj.

(14)

where conj. means that there exists a formula which is the complex conjugate of the formula
written at the left.

For LCK-manifolds (142) takes the form

Γκ
µλ̂

=
1

2
gκρ̂
(
ωλ̂gµρ̂ − ωρ̂gµλ̂

)
=

1

2

(
ωλ̂δ

κ
µ − ωκgµλ̂

)
, (conj.). (15)

Hence taking into account (15) we can rewrite (13) as

ωα,β̂ = ∂β̂ωα − ωκΓ
κ
αβ̂
− ωκ̂Γκ̂αβ̂ = ∂β̂ωα − ωβ̂ωα +

‖ω‖2

2
gαβ̂ =

‖ω‖2

2
gαβ̂.

Then we obtain
∂β̂ωα − ωβ̂ωα = 0. (16)
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Let us multiply the both sides (16) by e−σ where σ is a function such that dσ = ω. Then

−e−σ∂β̂ωα + e−σωβ̂ωα = ∂β̂
(
−e−σωα

)
= 0.

Finally, we obtain the equation
∂2ψ

∂zβ̂∂zα
= 0. (17)

The general solution of (17) is given by

ψ = f(z) + f(ẑ),

where f(z) is a some analytic function of coordinates z1, z2, ...zm, and f(ẑ) is a complex
conjugate of the function f(z), since ψ must be a real number which is subject to the condi-
tion Ref(z) > 0. Hence the function σ determining the conformal mapping is

σ = ln
1

f(z) + f(ẑ)
,

and Lee form is

ωα = − f ′α(z)

f(z) + f(ẑ)
, ωα̂ = − f ′α̂(ẑ)

f(z) + f(ẑ)
.

Hence we obtain the theorem.

Theorem 2 If the Lee form of an LCK M2m satisfies the condition

Φ4(∇Xω(Y )) =
‖ω‖2

2
g(X, Y ).

then the form is

ωα = − f ′α(z)

f(z) + f(ẑ)
, ωα̂ = − f ′α̂(ẑ)

f(z) + f(ẑ)
,

where f(z) is a some analytic function such that Ref(z) > 0.

One might conclude that it is easy to construct pseudo-Vaisman manifold because it seems
sufficient the latter admits a Kählerian metric. But that is wrong because not always it is
possible to find an analytic function such that Ref(z) > 0 in every manifold’s point. In
particular, there exists a theorem.

Theorem 3 There is no compact pseudo-Vaisman manifold.

Proof. Let M is an LCK-manifold such that its Lee form satisfies the condition

Φ4(ωi,j) =
1

2
‖ω‖2gij.

Transvecting this with gij , we find

∇iω
i =

n

2
‖ω‖2.

On the other hand, according to the Theorem of Green [15, p. 21]∫
Mn

∇iω
idτ = 0,
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where dτ is the volume element

dτ =
√
gdξ1 ∧ dξ2 ∧ ... ∧ dξn.

In this case we obtain
n

2

∫
Mn

‖ω‖2dτ = 0,

that is impossible for an LCK-manifold. The theorem is proved.

5 Vaisman manifods and Kähler-Vaisman potential
Let us concider locally conformal Kähler manifolds with a parallel Lee form.

∇jωi = 0.

In particular, using so called a holomorphic coordinate system we have

∇β̂ωα = 0. (18)

Taking into account (15), we can rewrite (18) as

ωα,β̂ = ∂β̂ωα − ωκΓ
κ
αβ̂
− ωκ̂Γκ̂αβ̂ = ∂β̂ωα − ωβ̂ωα +

‖ω‖2

2
gαβ̂ = 0.

We get

∂β̂ωα − ωβ̂ωα = −‖ω‖
2

2
gαβ̂. (19)

Multiplying the both sides (19) by e−σ where σ is a function such that dσ = ω we obtain

−e−σ∂β̂ωα + e−σωβ̂ωα = ∂β̂
(
−e−σωα

)
=
‖ω‖2

2
e−σgαβ̂.

Finally we get

∂β̂∂α
(
e−σ
)

=
‖ω‖2

2
ḡαβ̂,

or, since on a Vaisman manifold condition ‖ω‖2 = const holds,

∂β̂∂α
( 2

‖ω‖2
e−σ
)

= ḡαβ̂, (20)

where ḡαβ̂ = e−σgαβ̂ is a local Kählerian metric. The theorem follows from (20).

Theorem 4 For any Vaisman manifold Mn there locally exists a function

V (z, ẑ) =
2

‖ω‖2
e−σ,

which determines a local Kählerian metric.

The function V (z, ẑ) = 2
‖ω‖2 e

−σ is said to be a Kähler-Vaisman potential.
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