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are obtained as a closed system of linear differential equations of the Cauchy type in the covariant
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1. Introduction

In 1865, Beltrami considered a special case of geodesic mappings, namely, geodesic
mappings of spaces with constant curvature, and in 1869, Dini posed a more general
problem of the existence of possible geodesic mappings between surfaces. Later, Levi–
Civita [1] studied geodesic mappings between Riemannian spaces and derived the basic
equations for the mappings. We note the remarkable fact that this problem is related to the
study of equations for the dynamics of mechanical systems. Finally, Weyl [2] obtained these
Levi–Civita equations for geodesic mappings between spaces with an affine connection.

The theory of geodesic mappings was developed by Weyl [2], T. Thomas [3], J. Thomas [4],
Eisenhart [5], Shirokov [6], Solodovnikov [7], Petrov [8], Sinyukov [9], Aminova [10],
Mikeš et al. [11–13], Stanković, Velimirović et al. [14,15], and others.

Sinyukov [16] started to study geodesic mappings of symmetric and recurrent spaces
onto (pseudo-)Riemannian spaces. He proved that for non-trivial geodesic mappings, these
spaces are only projective Euclidean. An analogical result was obtained by Fomin [17]
for the geodesic mapping of infinite dimensional symmetric Riemannian spaces, and
Hinterleitner and Mikeš [18] for the geodesic mapping of generalized recurrent spaces onto
Weyl spaces.

Later, these results were generalized by Mikeš [19–21] and Sobchuk [22,23] for m-
symmetric, m-recurrent, and also 1-, 2-, and m-Ricci-symmetric spaces. The above-mentioned
results are in local form. The global results for these spaces were obtained in many papers—
for example, by Sinyukova [24], Stepanov [25], and Mikeš [11–13,26–28].

We note that the Ricci tensor plays an important role in Einstein’s fundamental equa-
tions of the general theory of relativity (Petrov [8]). In the m-symmetric and m-recurrent
spaces, the gravitational waves (Kaigorodov [29,30]) arise. These spaces are characterized
by high-order differential equations with components of the Ricci tensor. Their solution is
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often periodical and it creates the conditions for the formation of gravitational waves. The
questions about symmetry and projective structures were studied by Hall [31].

For the geodesic mappings of spaces with affine connections onto generalized Ricci-
symmetric spaces, there exist non-trivial results (i.e., the spaces are not projective Euclidean).
In this case, the solutions are obtained as a closed system of partial differential equations
(PDEs) of the Cauchy type in the covariant derivatives; see Berezovski et al. [32–34].

Many other geometric results have been formulated in the form of Cauchy-type
PDEs, such as isometric, conformal, projective and holomorphically projective motions,
mappings and deformations, see [8–13], and also, for example, for almost-geodesic and
rotary mappings [35,36].

Finally, we note that even for geodesic mappings between Riemannian spaces, equa-
tions of the Cauchy type cannot always be found due to the insufficient differentiability of
metrics. In this case, geodesic mappings preserve geodesics bifurcations, for example [37–
39]. On the other hand, it was found that the differentiability of metrics is maintained in
geodesic mappings [40,41].

The paper is devoted to the study of geodesic mappings of spaces with affine connec-
tions onto generalized 2-, 3-, and m-Ricci-symmetric spaces with affine connections. The
main equations for the mappings were obtained as closed systems of partial differential
equations of the Cauchy type in a covariant derivative.

We assume that all geometric objects under consideration are not only continuous but
also sufficiently smooth.

2. Generalized m-Ricci-Symmetric Spaces

Let An be an n-dimensional space with an affine connection ∇. Ricci-symmetric spaces
An are defined by the equation:

∇kRij = 0

and they are a generalization of locally symmetric Riemannian spaces in the sense of É.
Cartan, for which the equation ∇l Rh

ijk = 0 holds, where Rh
ijk and Rij are components of

the Riemann and Ricci tensors, respectively. In 1925, P.A. Shirokov proved that any Ricci-
symmetric Riemannian space is locally a direct product of Einstein manifolds; see [6]. This
structural theorem was extended to submanifolds of Euclidean spaces; see [42].

A generalization of Ricci-symmetric spaces An are manifolds whose Ricci tensor
satisfies the Codazzi equation

∇kRij = ∇jRik.

It is known (see [43]) that these equations are valid for the symmetric Ricci tensor of
the projective Euclidean space An. Riemannian manifolds with such a Ricci tensor were
studied by A. Gray and other geometers under the name of B-spaces (see [44], pp. 436–440).

The papers [29,30] defined 2-symmetric spaces of general relativity as four-dimensional
pseudo-Riemannian spaces with the metric signature (−+++), for which the equation
∇l∇mRh

ijk = 0 holds. This allows us to conclude that 2-symmetric spaces are 2-Ricci sym-
metric spaces, which are characterized by the equation

∇l∇mRij = 0.

In the papers [29,30], there was found a connection between the equation∇l∇mRh
ijk =

0 and the existence of gravitational plane waves. It was also stated in [29,30] that there are
2-symmetric spaces V4 different from the locally symmetric spaces.

In [29,30], a generalization of 2-symmetric spaces in the form of semi-symmetric spaces
was proposed, i.e., such (pseudo-)Riemannian spaces Vn, for which the following equal-
ity holds:

∇l∇mRh
ijk = ∇m∇l Rh

ijk.
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These equations can also be written as R(X, Y) · R = 0 for the curvature tensor R and
any vector fields X and Y on An. Such spaces were studied by N.S. Sinyukov [9] and were
called semi-symmetric.

Obviously, the above equations imply the equation:

∇l∇mRij = ∇m∇l Rij.

These equations can be written in the form R(X, Y) · Ric = 0 for the Ricci tensor Ric
and any vector fields X and Y on Vn. This allows us to conclude that semi-symmetric
spaces are Ricci semi-symmetric spaces. This form appears in many papers on Riemannian
differential geometry (see [45–50]).

The papers [29,30] also gave the definition of m-symmetric (pseudo-)Riemannian mani-
folds Vn, for which the equation

∇l1∇l2 · · · ∇mRh
ijk = 0

is satisfied. Analogically, these spaces are m-Ricci-symmetric ones which satisfy the condition

∇l1∇l2 · · · ∇lm Rij = 0.

A formal generalization of this class of spaces is generalized m-Ricci-symmetric spaces,
which are characterized by the condition

∇l1∇l2 · · · ∇lm−1(∇kRij +∇jRik) = 0.

If, in a generalized m-Ricci-symmetric space An, the Ricci tensor is symmetric (i.e.,
An is equiaffine, including (pseudo-)Riemannian; see [9–13,43]), then this space is m-
Ricci-symmetric. Moreover, the more general statement is true: if, in a generalized m-
Ricci-symmetric space, the tensor ∇l1∇l2 · · · ∇lm Rij is symmetric respective to the indices i and j,
then this space is also m-Ricci-symmetric. To prove this statement, we have to calculate the
following:

∇l1∇l2 · · · ∇lm−1∇kRij = ∇l1∇l2 · · · ∇lm−1∇kRji = −∇l1∇l2 · · · ∇lm−1∇iRjk = −∇l1∇l2 · · · ∇lm−1∇iRkj =

= ∇l1∇l2 · · · ∇lm−1∇jRki = ∇l1∇l2 · · · ∇lm−1∇jRik = −∇l1∇l2 · · · ∇lm−1∇kRij.

Comparig the first and the last formulas, we obtain: ∇l1∇l2 · · · ∇lm−1∇lm Rij = 0.
In general case, it does not have to be true in the spaces with affine connections. The

concept of generalized Ricci-symmetric spaces was first introduced by Berezovski et al. [33–35].

3. Basic Concepts of the Theory of Geodesic Mappings of Spaces with
Affine Connections

Let us suppose that a space An with an affine connection admits a one-to-one dif-
ferentiable mapping f onto another space Ān with an affine connection, and the inverse
mapping is differentiable too. Locally, the spaces are referred to as a common coordinate
system x = (x1, x2, . . . , xn).

Assume the deformation tensor of the respective mapping f has the form

Ph
ij(x) = Γ̄h

ij(x)− Γh
ij(x), (1)

where Γh
ij(x) and Γ̄h

ij(x) are components of affine connections without torsion of the spaces
An and Ān, respectively.

A diffeomorphism f : An → Ān is called a geodesic mapping if any geodesic on An is
mapped under f onto a geodesic on Ān.

It is known [1–13,43] that in order for a mapping f of a space with an affine connection
An onto another space with an affine connection Ān to be geodesic, it is necessary and
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sufficient that in a common coordinate system the deformation tensor can be represented
in the form

Ph
ij(x) = ψi(x)δh

j + ψj(x)δh
i , (2)

where δh
i is the Kronecker delta and ψi is a covector. A geodesic mapping is called non-trivial

if ψi 6≡ 0. If ψi ≡ 0, then f is a trivial geodesic of an affine.
It is obvious that any space An with an affine connection admits a (non-trivial) geodesic

mapping onto a space Ān with an affine connection. In a given space, we can arbitrarily
choose a covector field ψ, and with the help of Formula (2), there is the space Ān—which is
geodesicaly equivalent to the space An. We note that if An and Ān are equiaffine spaces
(i.e., the Ricci tensors of An and Ān are symmetric; see [11–13,43]), then ψi is gradient-like
vector field. This is true when, for example, An and Ān are (pseudo-)Riemannian.

Sinyukov opened the class of problems when the given space admits geodesic map-
pings onto other spaces. He [16] proved that equaffine symmetric and recurrent spaces
do not admit non-trivial geodesic mappings onto (pseudo-)Riemannian spaces with non-
constant curvatures. Mikeš [18–21] proved a very similar problem for equiaffine m-recurrent
and also (Ricci) m-symmetric spaces; see Sinyukov [9] and Mikeš et al. [11–13,18–21]. In
these cases, ψi ≡ 0.

Obviously, the right-hand side of Formula (2) depends on n arbitrary functions, which
are generally arbitrary. In the case of the natural requirements for spaces An and Ān, the
fundamental conditions of geodesic mappings in the form of a closed system of differ-
ential equations of the Cauchy type were found in the covariant derivatives. For these
systems, there exist regular solution methods; see [11–13]. A natural question is: Under
what conditions can the main equations for the mappings be obtained such a system?

Sinyukov (see [9–13]) proved that the main equations for geodesic mappings between
(pseudo-)Riemannian spaces Vn and V̄n are equivalent to some linear system of differential
equations of the Cauchy type in covariant derivatives.

A similar result was obtained by Mikeš and Berezovski [51] for geodesic mappings of
equiaffine spaces An onto (pseudo-)Riemannian spaces V̄n. This result holds not only for
equiaffine spaces but also for general ones. It follows from the fact that J.M. Thomas [4]
proved that any space with an affine connection is projectively equivalent to an equiaffine
space. This solves the problem of the projective metrizability of spaces An.

Interesting assumptions for spaces admitting geodesic and almost geodesic mappings
are found in [32–35]. Our work presents even more general assumptions that lead to the
fundamental equations of geodesic mappings having the Cauchy form.

It is known [9,12,13] that in a common coordinate system x, respective to the mapping,
the components of the Riemannian tensors Rh

ijk and R̄h
ijk of spaces with affine connections

An and Ān, respectively, are in the relation

R̄h
ijk = Rh

ijk + Ph
ik,j − Ph

ij,k + Pα
ikPh

jα − Pα
ij P

h
kα, (3)

where the comma “, ” denotes the covariant derivative with respect to the connection of
the An.

On the basis of Forumals (2) and (3), we have

R̄h
ijk = Rh

ijk − δh
j ψi,k + δh

k ψi, j − δh
i ψj,k + δh

i ψk, j + δh
j ψiψk − δh

k ψiψj. (4)

Contracting Formula (4) for h and k, we obtain

R̄ij = Rij + nψi,j − ψj,i + (1− n)ψiψj, (5)

where Rij and R̄ij are the Ricci tensors of the spaces with affine connections An and Ān,
respectively.
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From Formula (5), we obtain

ψi,j =
2

n2 − 1
[
nR̄ij + R̄ji − (nRij + Rji)

]
+ ψiψj. (6)

Since

R̄h
ijk;m =

∂R̄h
ijk

∂xm + Γ̄h
mαR̄α

ijk − Γ̄α
miR̄

h
αjk − Γ̄α

mjR̄
h
iαk − Γ̄α

mkR̄h
ijα,

from Formula (1), we have

R̄h
ijk;m = R̄h

ijk,m + Ph
mαR̄α

ijk − Pα
miR̄

h
αjk − Pα

mjR̄
h
iαk − Pα

mkR̄h
ijα. (7)

From now on, the semicolon “ ; ” denotes the covariant derivative with respect to the
connection of the space Ān.

Contracting Formula (7) for h and k, we obtain

R̄ij;m = R̄ij,m − Pα
miR̄αj − Pα

mjR̄iα. (8)

Symmetrizing Formula (8) in the indices i and m, we obtain

R̄ij;m + R̄mj;i = R̄ij,m + R̄mj,i − 2Pα
miR̄αj − Pα

mjR̄iα − Pα
ij R̄mα. (9)

Recalling that in the case of geodesic mappings of affinely connected spaces An → Ān,
the deformation tensor Pk

ij is expressed by Formula (2), from Formula (9), we obtain

R̄ij;m + R̄mj;i = R̄ij,m + R̄mj,i − 3ψmR̄ij − 3ψiR̄mj − ψj(R̄im + R̄mi). (10)

4. Geodesic Mappings of Spaces with Affine Connections onto Generalized
2-Ricci-Symmetric Spaces

A space Ān with an affine connection is called generalized Ricci-symmetric if the Ricci
tensor R̄ij for the space satisfies the conditions

R̄ij;k + R̄kj;i = 0.

A space Ān with an affine connection is called generalized 2-Ricci-symmetric if its Ricci
tensor R̄ij satisfies the conditions

R̄ij;km + R̄kj;im = 0. (11)

Obviously, generalized Ricci-symmetric spaces are generalized 2-Ricci-symmetric
spaces. By means of Formula (1), we have(

R̄im;j
)

,k = R̄im;jk + R̄αm;jPα
ik + R̄iα;jPα

mk + R̄im;αPα
jk,

R̄ij;k = R̄ij,k − R̄iαPα
jk − R̄αjPα

ik.
(12)

By covariant differentiation for Formula (10), with respect to the connection of the
space An, expressing the left-hand side of Formula (12) and taking account of Formula (2),
we find

R̄ij;mk + R̄mj;ik = R̄ij,mk + R̄mj,ik − 3ψm,kR̄ij − 3ψi,kR̄mj − ψj,k
(

R̄im + R̄mi
)

−
(
3R̄ij,k + R̄ik,j + R̄ki,j

)
ψm −

(
3R̄mj,k + R̄km,j + R̄mk,j

)
ψi − 2

(
R̄im,k + R̄mi,k

)
ψj

−3
(

R̄im,j + R̄mi,j
)
ψk + 8

(
R̄im + R̄mi

)
ψjψk + 4

(
R̄jm + R̄mj

)
ψiψk + 4

(
R̄ij + R̄ji

)
ψkψm

+3
(

R̄mk + R̄km
)
ψiψj + 2

(
R̄kj + R̄jk

)
ψiψm + 3

(
R̄ik + R̄ki

)
ψjψm.

(13)
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By means of Formula (6), Formula (13) is expressible in the form

R̄ij;mk + R̄mj;ik = R̄ij,mk + R̄mj,ik −
(
3R̄ij,k + R̄ik,j + R̄ki,j

)
ψm

−
(
3R̄mj,k + R̄km,j + R̄mk,j

)
ψi − 2

(
R̄im,k + R̄mi,k

)
ψj − 3

(
R̄im,j + R̄mi,j

)
ψk − Tijmk,

(14)

where

Tijmk = 3
[

1
n2 − 1

(
nR̄mk + R̄km −

(
nRmk + Rkm

))
+ ψmψk

]
R̄ij

+3
[

1
n2 − 1

(
nR̄ik + R̄ki −

(
nRik + Rki

))
+ ψiψk

]
R̄mj

+

[( 1
n2 − 1

(
nR̄jk + R̄kj −

(
nRjk + Rkj

))
+ ψjψk

](
R̄im + R̄mi

)
−8

(
R̄im + R̄mi

)
ψjψk − 4

(
R̄jm + R̄mj

)
ψiψk − 4

(
R̄ij + R̄ji

)
ψkψm

−3
(

R̄mk + R̄km
)
ψiψj − 2

(
R̄kj + R̄jk

)
ψiψm − 3

(
R̄ik + R̄ki

)
ψjψm.

(15)

Let us assume that the space Ān is generalized 2-Ricci-symmetric. Then, the Ricci
tensor R̄ij of the space Ān satisfies the conditions of Formula (11).

By means of Formula (11), it follows from Formula (14) that

R̄ij,mk + R̄mj,ik =
(
3R̄ij,k + R̄ik,j + R̄ki,j

)
ψm +

(
3R̄mj,k + R̄km,j + R̄mk,j

)
ψi

+2
(

R̄im,k + R̄mi,k
)
ψj + 3

(
R̄im,j + R̄mi,j

)
ψk + Tijmk.

(16)

Let us alternate Formula (16) with respect to the indices i and k. Because of the Ricci
identity, we obtain

R̄ij,mk − R̄kj,mi = R̄αjRα
mki + R̄mαRα

jki + 3
(

R̄ij,k − R̄kj,i
)
ψm

+2
(

R̄im,k + R̄mi,k − R̄km,i − R̄mk,i
)
ψj + 3R̄mj,kψi − 3R̄mj,iψk + Tijmk − Tkjmi.

(17)

By means of the Ricci identity and the properties of a curvature tensor, Formula (13) is
expressible in the form

R̄ij,km − R̄kj,im = 2R̄αjRα
mki + R̄iαRα

jkm + R̄kαRα
jmi + R̄mαRα

jki + 3
(

R̄ij,k − R̄kj,i
)
ψm

+2
(

R̄im,k + R̄mi,k − R̄km,i − R̄mk,i
)
ψj + 3R̄mj,kψi − 3R̄mj,iψk + Tijmk − Tkjmi.

(18)

Let us interchange k and m in Formula (18). Then, adding it to Formula (16), we have

2R̄ij,mk =2R̄αjRα
kmi + R̄iαRα

jkm + R̄mαRα
jki + R̄kαRα

jmi

+
(
3R̄ij,k − 3R̄kj,i + R̄ik,j + R̄ki,j

)
ψm +

(
3R̄mj,k + 3R̄kj,m + R̄km,j + R̄mk,j

)
ψi

+ 2
(

R̄im,k + R̄mi,k + R̄ik,m + R̄ki,m − R̄mk,i − R̄km,i
)
ψj

+ 3
(

R̄im,j + R̄mi,j + R̄ij,m − R̄mj,i
)
ψk + Tijmk + Tijkm − Tmjki.

(19)

Let us introduce the tensor R̄ijk, defined by

R̄ij,k = R̄ijk. (20)

By means of Formula (20), Formula (19) is expressible in the form

2R̄ijm,k =2R̄αjRα
kmi + R̄iαRα

jkm + R̄mαRα
jki + R̄kαRα

jmi

+
(
3R̄ijk − 3R̄kji + R̄ikj + R̄kij

)
ψm +

(
3R̄mjk + 3R̄kjm + R̄kmj + R̄mkj

)
ψi

+ 2
(

R̄imk + R̄mik + R̄ikm + R̄kim − R̄mki − R̄kmi
)
ψj

+ 3
(

R̄imj + R̄mij + R̄ijm − R̄mji
)
ψk + Tijmk + Tijkm − Tmjki.

(21)
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In the following, we have assumed that space An with an affine connection is given.
Then, taking account of the structure of the tensor Tijlk, which was determined by For-
mula (15), we see that the right-hand side of Equation (20) depends on unknown tensors
ψi, R̄ij, R̄ijk.

Obviously, in the space An, Equations (6), (20), and (21) form a closed system of PDEs
of the Cauchy type with respect to the functions ψi(x), R̄ij(x), and R̄ijk(x).

We have proved the following theorem:

Theorem 1. In order for a space An with an affine connection to admit geodesic mapping onto a
generalized 2-Ricci-symmetric space Ān, it is necessary and sufficient that the system of differential
equations of the Cauchy type in the covariant derivatives of Formulas (6), (20), and (21) has a
solution with respect to the unknown functions ψi(x), R̄ij(x), R̄ijk(x).

By the elementary sum of unknown function, we make sure that the following holds:

Consequence. The general solution of the mixed system of the Cauchy type includ-
ing Formulas (6), (20), and (21) depends on no more than n + 1

2 (n
2 + n3) essential

parameters.

5. Geodesic Mappings of Spaces with Affine Connections onto Generalized
3-Ricci-Symmetric Spaces

A space Ān with an affine connection is called generalized 3-Ricci-symmetric if the Ricci
tensor R̄ij for the space satisfies the conditions

R̄ij;kml + R̄kj;iml = 0. (22)

Obviously, generalized 2-Ricci-symmetric spaces are generalized 3-Ricci-symmetric
spaces.

Observe that Formulas (6) and (14) were obtained for the general case of geodesic
mappings of spaces with affine connections.

Firstly, because of Formula (1), we obtain

R̄ij;mk = R̄ij,mk − R̄iα,kPα
jm − R̄iαPα

jm,k − R̄αj,kPα
im − R̄αjPα

im,k − Pα
ikR̄αj;m − Pα

jkR̄iα;m − Pα
mkR̄ij;α,(

R̄ij;mk
)

,l = R̄ij;mkl + Pα
il R̄αj;mk + Pα

jl R̄iα;mk + Pα
ml R̄ij;αk + Pα

kl R̄ij;mα.

From these equations, taking account of Formulas (2) and (12), we find

R̄ij;mk = Ωijmk,(
R̄ij;mk

)
,l = R̄ij;mkl + 4ψlΩijmk + ψiΩl jmk + ψjΩilmk + ψmΩijlk + ψkΩijml ,

(23)

where

Ωijmk = R̄ij,mk − ψjR̄im,k − 3ψmR̄ij,k − ψiR̄mj,k − ψiR̄kj,m − 3ψkR̄ij,m − ψjR̄ik,m

+4ψkψiR̄mj + 3ψiψmR̄kj + ψiψj
(

R̄km + R̄mk
)
+ 8ψkψmR̄ij

+4ψkψjR̄im + 3ψmψjR̄ik − 2ψm,kR̄ij − ψj,kR̄im − ψi,kR̄mj.

(24)

Let us assume that in Formula (24), the covariant derivatives of the vector ψi with
respect to the connection of the space An are expressed according to Formula (6).

Let us covariantly differentiate Formula (14) with respect to the connection of the
space An. Then, using Formula (23), expressing, on the left-hand side, the third covariant
derivatives of R̄ij with respect to the connection of An, in terms of the third covariant
derivatives with respect to the connection of the space Ān, and transforming the formula,
we obtain

R̄ij;mkl + R̄mj;ikl = R̄ij,mkl + R̄mj,ikl −Ωijmkl , (25)
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where
Ωijmkl =

(
3R̄ij,kl + R̄ik,jl + R̄ki,jl

)
ψm +

(
3R̄ij,k + R̄ik,j + R̄ki,j

)
ψm,l

+
(
3R̄mj,kl + R̄km,jl + R̄mk,jl

)
ψi +

(
3R̄mj,k + R̄km,j + R̄mk,j

)
ψi,l

+2
(

R̄im,kl + R̄mi,kl
)
ψj + 2

(
R̄im,k + R̄mi,k

)
ψj,l + 3

(
R̄im,jl + R̄mi,jl

)
ψk

+3
(

R̄im,j + R̄mi,j
)
ψk,l + Tijmk,l + 4ψl

(
Ωijmk + Ωmjik

)
+ψi

(
Ωl jmk + Ωmjlk

)
+ ψj

(
Ωilmk + Ωmlik

)
+ψm

(
Ωijkl + Ωl jki

)
+ ψk

(
Ωijml + Ωmjil

)
.

(26)

Again, assume that in Formula (26) the covariant derivatives of the vector ψi with
respect to the connection of the space An are expressed according to Formula (6).

Suppose that the space Ān is generalized 3-Ricci-symmetric. Then, the Ricci tensor R̄ij
of the space Ān satisfies the conditions Formula (22).

Taking account of Formula (22), from Formula (25), it follows that

R̄ij,mkl + R̄mj,ikl = Ωijmkl . (27)

Alternating Formula (27) with respect to the indices i and k, and taking account of the
Ricci identity, we obtain

R̄ij,mkl − R̄kj,mil = Ωijmkl −Ωkjmil + R̄αj,l Rα
mki + R̄αjRα

mki,l + R̄mα,l Rα
jki + R̄mαRα

jki,l . (28)

Because of the Ricci identity and the properties of a curvature tensor, Formula (28) is
expressible in the form

R̄ij,kml − R̄kj,iml = Ωijmkl −Ωkjmil + 2R̄αj,l Rα
mki + 2R̄αjRα

mki,l + R̄iα,l Rα
jkm

+R̄iαRα
jkm,l + R̄kα,l Rα

jmi + R̄kαRα
jmi,l + R̄mα,l Rα

jki + R̄mαRα
jki,l .

(29)

Interchanging k and m in Formula (29) and adding it to Formula (27), we have

2R̄ij,mkl = Ωijmkl + Ωijkml −Ωmjkil + 2R̄αj,l Rα
kmi + 2R̄αjRα

kmi,l + R̄iα,l Rα
jmk

+R̄iαRα
jmk,l + R̄mα,l Rα

jki + R̄mαRα
jki,l + R̄kα,l Rα

jmi + R̄kαRα
jmi,l .

(30)

Let us introduce the tensor R̄ijkm defined by

R̄ijk,m = R̄ijkm. (31)

By means of Formulas (20) and (31), Formula (30) may be written in the form

2R̄ijmk,l = Ωijmkl + Ωijkml −Ωmjkil + 2R̄αjl Rα
kmi + 2R̄αjRα

kmi,l + R̄iαl Rα
jmk

+R̄iαRα
jmk,l + R̄mαl Rα

jki + R̄mαRα
jki,l + R̄kαl Rα

jmi + R̄kαRα
jmi,l .

(32)

In the following, we have assumed that a space An with affine connection is given.
Then, the right-hand side of Formula (31) depends on ψi, R̄ij, R̄ijk, and R̄ijkm.

Obviously, in the space An Formulas (6), (20), (31), and (32) form a closed system
of differential equations of the Cauchy type in covariant derivatives with respect to the
functions ψi(x), R̄ij(x), R̄ijk(x), and R̄ijkm(x).

We obtain the following theorem:

Theorem 2. In order for a space An with an affine connection to admit a geodesic mapping onto a
generalized 3-Ricci-symmetric space Ān, it is necessary and sufficient that the system of differential
equations of the Cauchy type in covariant derivatives of Formulas (6), (20), (31), and (32) has a
solution with respect to the unknown functions ψi(x), R̄ij(x), R̄ijk(x), and R̄ijkm(x).
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Consequence . The general solution of the mixed system of the Cauchy type including
Formulas (6), (20), (31), and (32) depends on no more than n + 1

2 (n
2 + n4) essential

parameters.

6. Geodesic Mappings of Spaces with Affine Connections onto Generalized
m-Ricci-Symmetric Spaces

A space Ān with an affine connection is called generalized m-Ricci-symmetric if the Ricci
tensor R̄ij for the space satisfies the condition

R̄ij;ρ1ρ2 ...ρm + R̄ρ1 j;iρ2 ...ρm = 0. (33)

It is obvious that generalized 2-Ricci-symmetric spaces and generalized 3-Ricci-symmetric
spaces are special cases of generalized m-Ricci-symmetric spaces with m = 2 and m = 3,
respectively.

Let us covariantly differentiate (m− 3) times Formula (26) with respect to the connec-
tion of the space An. Then, expressing, in the left-hand side, the covariant derivatives with
respect to the connection of the space An, in terms of the covariant derivatives with respect
to the connection of the space Ān, using the formula (Kaigorodov [29,30])

(R̄ij;ρ1 ...ρτ−2ρτ−1),ρτ
= R̄ij;ρ1 ...ρτ−2ρτ−1ρτ

+ Pα
iρτ

R̄αj;ρ1 ...ρτ−2ρτ−1

+ Pα
jρτ

R̄iα;ρ1 ...ρτ−2ρτ−1 + Pα
ρ1ρτ

R̄ij;α...ρτ−2ρτ−1 + · · ·+ Pα
ρτ−1ρτ

R̄ij;ρ1 ...ρτ−2α.

Transforming the left-hand side of Formula (33), we obtain

R̄ij;ρ1ρ2 ...ρm + R̄ρ1 j;iρ2 ...ρm = R̄ij,ρ1ρ2 ...ρm + R̄ρ1 j,iρ2 ...ρm −Ωijρ1ρ2 ...ρm , (34)

where the tensor Ωijρ1ρ2 ...ρm depends on unknown tensors ψi, R̄h
ij, R̄ij,ρ1 , and R̄ij,ρ1ρ2 , . . . ,

R̄ij,ρ1ρ2 ...ρm−1 . Observe that the tensor also depends on the known tensors, which are defined
in the space An.

Suppose that the space Ān is generalized m-Ricci-symmetric. Then, the Ricci tensor
R̄ij of the space Ān satisfies the conditions of Formula (33).

By means of Formula (33), Formula (34) may be written in the form

R̄ij,ρ1ρ2ρ3 ...ρm + R̄ρ1 j,iρ2ρ3 ...ρm = Ωijρ1ρ2ρ3 ...ρm , (35)

Alternating Formula (35) with respect to the indices i and ρ2, taking account of the
Ricci identity, we have

R̄ij,ρ1ρ2ρ3 ...ρm − R̄ρ2 j,ρ1iρ3 ...ρm =
1
Ωijρ1ρ2ρ3 ...ρm , (36)

where

1
Ωijρ1ρ2ρ3 ...ρm= Ωijρ1ρ2ρ3 ...ρm −Ωρ2 jρ1iρ3 ...ρm −

(
R̄αjRα

ρ1iρ2
+ R̄ρ1αRα

jiρ2

)
,ρ3 ...ρm

.

By means of the Ricci identity, Formula (36) is expressible in the form

R̄ij,ρ2ρ1ρ3 ...ρm − R̄ρ2 j,iρ1ρ3 ...ρm =
2
Ωijρ1ρ2ρ3 ...ρm , (37)

where

2
Ωijρ1ρ2ρ3 ...ρm=

1
Ωijρ1ρ2ρ3 ...ρm +

(
R̄αjRα

ρ1ρ2i + R̄iαRα
jρ2ρ1

+ R̄ρ2αRα
jρ1i

)
,ρ3 ...ρm

.
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Interchanging ρ1 and ρ2 in Formula (37) and adding it to Formula (37), we have

2R̄ij,ρ1ρ2ρ3 ...ρm =
3
Ωijρ1ρ2ρ3 ...ρm (38)

where
3
Ωijρ1ρ2ρ3 ...ρm= Ωijρ1ρ2ρ3 ...ρm+

2
Ωijρ2ρ1ρ3 ...ρm .

Taking account of the structure of the tensor
3
Ωijρ1ρ2ρ3 ...ρm , we see that the right-

hand side of Formula (38) depends on unknown tensors ψi, R̄ij, R̄ij,ρ1 , R̄ij,ρ1 , R̄ij,ρ1ρ2 , . . .,
R̄ij,ρ1ρ2 ...ρm−1 . The tensor also depends on the known tensors, which are defined in the space
An. Let us introduce the tensors R̄h

ijρ1ρ2ρ3
,. . ., R̄h

ijρ1ρ2ρ3 ...ρm−2ρm−1
, defined by

R̄h
ijρ1ρ2,ρ3

= R̄h
ijρ1ρ2ρ3

,
. . . . . . . . . . .

R̄h
ijρ1ρ2ρ3 ...ρm−2,ρm−1

= R̄h
ijρ1ρ2ρ3 ...ρm−2ρm−1

.
(39)

Because of Formulas (20), (31) and (39), Formula (38) is expressible in the form

2R̄ijρ1ρ2ρ3 ...ρm−1,ρm =
3
Ωijρ1ρ2ρ3 ...ρm−1ρm (40)

where the tensor
3
Ωijρ1ρ2ρ3 ...ρm−1ρm depends on unknown tensors ψi, R̄ij, R̄ijρ1 , R̄ijρ1ρ2 , . . .,

R̄ijρ1ρ2 ...ρm−1ρm−1 , and also it depends on the known tensors, which are defined in the space
An.

Let us assume that a space An with affine connection is given. Then, in the space An,
the Equations (6), (20), (31), (39) and (40) form a closed system of differential equations of
Cauchy type in covariant derivatives with respect to the functions ψi(x), R̄ij(x), R̄ijρ1(x),
R̄ijρ1ρ2(x), . . ., R̄ijρ1ρ2 ...ρm−2ρm−1(x).

We obtain the following theorem.

Theorem 3. In order that space An with affine connection admits geodesic mapping onto a gen-
eralized m-Ricci-symmetric space Ān, it is necessary and sufficient that the system of differential
equations of Cauchy type in covariant derivatives (6), (20), (31), (39) and (40) has a solution with
respect to the unknown functions ψi(x), R̄ij(x), R̄ijρ1(x), R̄ijρ1ρ2(x), . . ., R̄ijρ1ρ2 ...ρm−2ρm−1(x).

Consequence. The general solution of the mixed system of the Cauchy type including
Formulas (6), (20), (31), (39), and (40) depends on no more than n + 1

2 (n
2 + nm+1)

essential parameters.

7. Conclusions

In this paper, we study geodesic mappings of spaces with affine connections onto
generalized m-Ricci-symmetric spaces. For these cases, we obtain fundamental equations in
the form of the system of differential equations of the Cauchy type in covariant derivatives;
the general solutions depend on the real parameters.
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